Log gamma function
#include <math.h>
double lgamma( double x );
double lgamma_r( double x,
int* signgamp);
float lgammaf( float x );
float lgammaf_r( float x,
int* signgamp);
The lgamma() and lgamma_r() functions return the natural log (ln) of the Γ function and are equivalent to gamma(). These functions return ln|Γ(x)|, where Γ(x) is defined as follows:
The results converge when x is between 0 and 1. The Γ function has the property:
Γ(N) = Γ(N-1)×N
The lgamma* functions compute the log because the Γ function grows very quickly.
The lgamma() and lgammaf() functions use the external integer signgam to return the sign of Γ(x), while lgamma_r() and lgammaf_r() use the user-allocated space addressed by signgamp.
g = signgam * exp( lgamma( x ));
to compute g = Γ(x)'. Instead, compute lgamma() first:
lg = lgamma(x); g = signgam * exp( lg );
Note that Γ(x) must overflow when x is large enough, underflow when -x is large enough, and generate a division by 0 exception at the singularities x a nonpositive integer.
ln|Γ(x)|
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>
int main(int argc, char** argv)
{
double a, b;
errno = EOK;
a = 0.5;
b = lgamma(a);
printf("lgamma(%f) = %f %d \n", a, b, errno);
return(0);
}
produces the output:
lgamma(0.500000) = 0.572365 0
lgamma() and lgammaf() are ANSI, POSIX 1003.1; lgamma_r() and lgammaf_r() are QNX Neutrino
| Safety: | |
|---|---|
| Cancellation point | No |
| Interrupt handler | No |
| Signal handler | No |
| Thread | Yes |