
Reduce Medical Device
Compliance Costs

with Best Practices

1

mark.pitchford@ldra.com

mailto:mark.pitchford@ldra.com

Agenda

• Medical Software Certification
– How new is Critical Software Certification?

– What do we need to do?

– What Best Practises will help us achieve Certification?

• Questions & Answers

2

CRITICAL SOFTWARE CERTIFICATION

HOW NEW IS IT?

3

Risk of death or injury

High cost of repair
High cost of product recall

4

Where is certification enforced?

What software needs to be certified?

Aircraft

Nuclear
Power
Stations

Trains

Cars

Medical Devices

Industrial Plants

Whenever the cost of failure is very high

IEC 61511 (First published 2003)

ISO/DIS 26262 (Draft)

IEC 62304 (First published 2006)

IEC 61513 (First published 2001)

CENELEC EN 50128 (First published 2001)

Leading Safety Critical Standards
DO-178B (First published 1992) / DO-178C

IEC 61508 (First published 1998)

Avionics

Industrial

Nuclear

Automotive

Medical

Process

Railway

So, the experience of other sectors is invaluable
to the medical device (and automotive) industries.

IEC 62304 AND RELATED IEC 61508
DERIVATIVES

6

Level E to Level A

SIL Level 0 to SIL Level 4

Class A to Class C

ASIL A to ASIL D

SIL Level 1 to 4

Safety Integrity Levels
IEC 61508 (Industrial)

ISO/DIS 26262 (Automotive)

IEC 62304 (Medical)

CENELEC EN 50128 (Railway)

DO-178B / DO-178C (Avionics)

So, nothing new here either!

Functional Safety Assessment

Minimum Level of
Independence

Safety Integrity Level

1 2 3 4

Independent Person HR HR NR NR

Independent Department - HR HR NR

Independent Organization - - HR HR

Table 2: Assessment independence level for E/E/PE and
software life cycle activities

8

(E/E/PE) : Electrical / Electronic / Programmable Electronic systems

Classes A – C in IEC 62304 are based on the principle
of IEC 61508’s SIL levels ...

• Verification of code
• Software module testing
• Software integration testing

• Software requirements
• The safety lifecycle for software,
• Validation and verification
appropriate for each SIL (or class)

• Primarily process oriented
• Includes Verification and Validation(V&V)
guidelines for that process

IEC 61508 and IEC 62304
IEC 61508 based standards are

IEC 61508 based standards define the need for

IEC 61508 based standards require V&V activities including:

Best practises to achieve these aims are long established elsewhere and
so can easily be adopted by the medical devices industry in meeting IEC 62304

CRITICAL SOFTWARE CERTIFICATION

WHAT DO WE NEED TO DO?

10

IEC 62304 : Common Framework

• The set of processes, activities, and tasks described in this standard establishes
a common framework for medical device software life cycle processes

11

IEC62304 : Clause 5

• IEC 62304 Clause 5 details the software development process of
the product. It specifically addresses:

12

Process

5.1 Software development planning

5.2 Software requirements analysis

5.3 Software architectural design

5.4 Software detailed design

5.5 Software unit implementation and verification

5.6 Software integration and integration testing

5.7 Software system testing

5.8 Software release

IEC62304 : Clause 5.3

• IEC 62304 Clause 5.3 details the Software architectural design:

13

5.3 Software architectural design

5.3.1 Transform software requirements into an ARCHITECTURE

5.3.2 Develop an ARCHITECTURE for the interfaces of SOFTWARE ITEMS

5.3.3 Specify functional and performance requirements of SOUP item

5.3.4 Specify SYSTEM hardware and software required by SOUP item

5.3.5 Identify segregation necessary for RISK CONTROL

5.3.6 Verify software ARCHITECTURE

SOUP = Software Of Unknown Pedigree

Safety Integrity Levels

• The IEC 62304 standard expects the manufacturer to assign a
safety class to the software system as a whole

• This classification is based on the potential to create a hazard
that could result in an injury to the user, the patient or other
people

• There are three software classes:

14

Class Failure Impact

A No injury or damage to health is possible

B Non serious injury is possible

C Death or serious injury is possible

Impact of Software Safety Classification

• The safety
classification has a
significant impact on
the software
development life
cycle

15

MEDICAL SOFTWARE CERTIFICATION

WHAT BEST PRACTICES SHOULD WE APPLY?

16

Recommended Best Practices

• Requirements
– Trace Requirements

• Static Analysis
– Coding Standard

– Check Complexity

– Control Flow Analysis
– Data Flow Analysis

• Dynamic Analysis & Unit Testing
– Structural Coverage

• Test independence

17

Avoid the Requirement Gap

• Process must be “right weight”
– Not too heavy, not too light

– Help rather than hinder

– No bias to particular disciplines or phases

• Focus on requirements
– Don’t ignore them once construction begins
– Implement what the stakeholder wants

• Manage requirements
– Continually refine

– Apply quality criteria

• Trace requirements

18

Requirements Drive Development

Project
Managers

Development &
Build Engineers

Test
Engineers

Software
Engineers

Model or Design
Specification

Code Base

Software
Requirements &
Defect Reports

Test Cases

Manage requirements;
assign verification &

debug tasks

Requirements
Traceability
Matrix
(RTM)

Map requirements
to design and
source code

Implement requirements
& verify design

Verifies requirements
against test cases

19

Traceability Across Development Tiers

Host Tier
(Node 1 – n)

Target Tier
(Node 1 – n)

Test Results
& Defects

Test Results
& Defects

Test Cases
to LL Reqs

Test Cases
to LL Reqs

LL Reqs
to HL
Reqs

Code to
LL Reqs

Software Specs
Hand CodeFormal MethodsModelling Tool

Implementation
(Source Code / Assembly)

Requirements Traceability Matrix

High-Level
Requirements

Tier 1

Tier 2

Tier 3

Tier 4

Tier 5

Requirements Traceability Matrix

Requirements Traceability Matrix

Requirements Traceability Matrix

Design
Review
Defects

Code & Quality
Review
Defects

20

Requirements Traceability

21

Requirements Traceability - Minimizing the
overhead

• Traditionally a labour intensive process
– even if static & dynamic analysis are automated.

• Automation improves quality and reduces costs through
– Less room for human error
– Automatic analysis of the “knock on” effects of changes

– Reference point when changes are requested
– A maintained RTM even when the pressure is on

22

STATIC ANALYSIS

23

24

Coding Standards for new developments

Quality
The best way to avoid having defects in the code is not to put them in

Roughly 80% of C/C++ software defects are attributable to issues with
20% of the language constructs

Standards such as MISRA-C:2004 and MISRA C++:2008 avoid this
subset to improve quality

Security
Standards such as Cert C avoid language constructs that can lead

to exploitable vulnerabilities

Style
Ensure that code is written in a particular style

Coding Standards - Minimizing the overhead

25

But it soon becomes
a learning tool...

When this is a new concept,
initial resistance is likely...

... And ultimately merely
confirms that the standard
is being met

Automating “peer review” improves quality and reduces costs
through

• Consistency of interpretation
• Consistency of application (no “Friday afternoon” effect!)
• Removal of potential for tension between participants.
• Speed of review process

COMPLEXITY ANALYSIS

26

Why use Complexity Metrics?

• Code is sometimes complicated.

• Sometimes complicated code is addressing a complex
problem.
– That is unavoidable!

• Sometimes complicated code is not addressing a complex
problem. That code:
– Is prone to costly error at the point of release
– Is prone to costly error during modification

– Will demand disproportionately extensive tests whenever changes are
made

27

Complexity Metrics
• The principal Complexity Metrics are:

– Knots
– Cyclomatic Complexity

• Additional complexity metrics are:
– Essential Knots
– Essential Cyclomatic Complexity

28

Complexity Analysis - Minimizing the overhead

• Sometimes complicated code is not addressing a complex
problem. That code:

– Is prone to costly error at the point of release

– Is prone to costly error during modification
– Will demand disproportionately extensive tests whenever changes are

made

29

Control Flow & Data Flow Analysis
• Control flow analysis

– Control Flow Analysis is performed both on the program
calling hierarchy and on the individual procedures. The rules
of structured programming are applied and defects reported

• Static data flow analysis
– Follows variables through the source code and reports any

anomalous use. This is performed at procedure level and
also as part of the system wide analysis

30

Call Graph : Control Flow Visualisation

31

DYNAMIC ANALYSIS – UNIT TEST &
CODE COVERAGE

32

Why use Unit/Module Test?

• Unit testing focuses on the behaviour of execution of a
subset of application code.
– Code is compiled and executed in a similar environment to that used

by the application under development

• Unit testing traditionally employs a bottom-up testing
strategy in which units are tested and then integrated with
other test units.

• There is clearly no complete code set to hand to initiate tests
such as these, which implies the need for “harness” code to
allow the code to build.

33

Why use Structural Coverage?

34

• Consistent coverage produces software ready for all
eventualities.

• Code coverage data from Unit and System testing can be
combined

Unit Testing and Code Coverage - Minimizing the
overhead

• Automated Unit test tools are designed to automatically generate
the harness code.
– This means that tests focus on the application code, and there is no need to

debug the harness code itself!

• Unit test sequences can be stored and re-executed at will, from
batch files if desired.

• Code Coverage from Unit Test or System Test can be used in
isolation or combination.

• The “test-modify-retest” process cycle can be undertaken even
under version control.

35

TEST TOOLS & TEST INDEPENDENCE

36

Test tools and test independence

• Static analysis
– The interpretation of coding rules is consistent and repeatable.

• Unit test
– Ideally, dynamic tests should be carried out independently.

– Where that is not practical, test tools provide a framework which itself
lends an element of independence.

– Traditional Unit testing demands a certain knowledge of the code in
order to write the harness.

– Robustness tests through automatic vector generation.

• System test
– Code coverage confirms the extent to which code has been exercised.

37

SUMMARY

38

Summary

• How new is Software Standards Compliance?

• What do we need to do?
– IEC 62304 and other standards
– Class levels

• How do we apply best practice?
– Requirements Traceability
– Coding Standards

– Control Flow and Data Flow Analysis
– Software Module Testing

– Structural Coverage & Unit Test
– Test tools & test independence

39

For further information:

www.ldra.com
mark.pitchford@ldra.com

jonathan.kelly@ldra.com

40

http://www.ldra.com
mailto:mark.pitchford@ldra.com
mailto:jonathan.kelly@ldra.com

