
SYMMETRIC
MULTIPROCESSING
(SMP) AT A GLANCE
The bandwidth explosion, combined with many new

network services, is putting extreme demands on the

control-plane processor, to the point where the fastest CPU

struggles to keep pace. In response, many software designers

are distributing the workload across multiple CPUs, using

symmetric multiprocessing (SMP). The commercial advan-

tages are many: greater system density, lower development

costs, compressed time to market, and the scalability

to handle growing network topologies and new network

services on demand.

What is SMP?
SMP is a specific implementation of multiprocessing

in which multiple CPUs share the same board, memory,

peripherals, resources and operating system (OS),

physically connected via a common high-speed bus.

SMP at a Glance

> 2 QNX Software Systems

Different Processing Environments
Consider three different environments and how multiprocessing can be implemented: uniprocessing,
simple distributed multiprocessing, and SMP.

Uniprocessing Environment

A single CPU handles all system processing activity and is directly connected to the main memory.

MEMORY

CPU

CACHE

ROUTE MANAGER ETHERNET DRIVER
Thread A Thread B

FILE SYSTEM
Thread C Thread D Thread E

Thread A Thread C Thread D Thread E

Thread B
Priority

OS SCHEDULER
Thread B

> For improved processing, the CPU can be

replaced with a higher-speed alternative,

which can result in heat dissipation problems.

> Increasing CPU speed will increase

performance, but not in a linear fashion,

due to existing peripheral and component

limitations.

> Concurrency is simulated by switching

among different tasks.

Simple Distributed Multiprocessing Environment

Individual CPUs function as separate nodes, each utilizing its own OS, peripherals, and memory. These nodes

are joined together by some form of network or high-speed interconnect.

CPU

CACHE

CPU

CACHE

MEMORY

ROUTE MANAGER ETHERNET DRIVER
Thread A Thread B

FILE SYSTEM
Thread C Thread D Thread E

Thread A Thread C Thread D Thread E

Thread B
Priority

OS SCHEDULER
Thread B

MEMORY

PACKET FORWARDER ETHERNET DRIVERFILE SYSTEM
Thread C Thread D Thread EThread A

Thread A

Thread A Thread C Thread D Thread E
Priority

0S SCHEDULER

HIGH-SPEED INTERCONNECT

> Requires replication of OS, peripherals, and resources

for each CPU contributing to incremental costs, space

and power requirements, but this approach can also

provide greater fault tolerance and system availability.

> Works best when processes distributed across the

multiple nodes share relatively small amounts of data.

> Application software may require modifications

to support inter-node communication, unless

the OS provides built-in distributed processing

(QNX® Neutrino® RTOS, for example).

QNX Software Systems 3 >

> Each CPU runs tasks independently as scheduled

by the OS, providing true concurrency by allowing

multiple applications and system services to

execute at the same time.

> Tasks are distributed transparently across several

CPUs to maximize performance or can be bound to

a specific processor to segment realtime and non-

realtime system components.

> There are no incremental hardware requirements,

other than for the additional CPUs.

> Applications and system services require little or no

changes if OS is based on a microkernel architecture.

> Software doesn’t incur any overhead to maintain

a coherent view of the data distributed among

the several processors; this coherency is handled

transparently by the SMP hardware.

SMP Environment

MEMORY

HIGH-BANDWIDTH CPU BUS

CACHE

CPU

CACHE

CPU

CACHE CACHE

ROUTE MANAGER ETHERNET DRIVER
Thread A Thread B

FILE SYSTEM
Thread C Thread D Thread E

Thread A Thread C Thread D Thread E

Thread B
Priority

QNX NEUTRINO REALTIME SCHEDULER (OS)
Thread B

FUTURE
CPU

FUTURE
CPU

Processor cores lie in close proximity to one another and are physically connected by a common high-speed bus.

Common resources are shared by all CPUs, including memory, peripherals, resources, and the operating system

(OS), which coordinates simultaneous tasks or threads among the CPUs.

SMP at a Glance

> 4 QNX Software Systems

Applying SMP

Who Needs It

> System-level architects
> Application designers
> System designers

Benefits

> Scalability to support new network services, without the need for forklift upgrades
> Improved system density
> Significantly boosts processing power without incremental costs of support chips,

chassis slots, upgraded peripherals
> Provides true concurrency by allowing multiple applications and system services

to execute at the same time

Sample Applications

> Systems comprising many different processes, that need to operate in parallel
without source code modifications

> Multithreaded applications
> Compute-intensive applications
> Systems requiring additional processing power, but without incurring cost

and time of software rewrites

Examples

> Packet forwarding
> Routing table adjustments
> Encryption and decryption
> Voice and data compression and encoding
> Voice recognition
> Speech synthesis
> High-end medical imaging
> Simulators for aircraft and high-speed trains
> Multithreaded server systems such as storage area networking

devices and online transaction processing systems

QNX Software Systems 5 >

Architecture Matters
Not all operating systems can take full advantage of the concurrency offered by SMP hardware.

A highly componentized operating system, based on a microkernel architecture, is naturally suited
to SMP environments. Because such systems inherently have a high degree of parallelism, different
components can run concurrently. The overall system benefits from all available processors.
Moreover, the kernel modifications required for SMP are small: only the microkernel is modified,
incurring negligible overhead. Other services can gain the performance advantages of SMP without
code changes, thereby avoiding costly and time-consuming software rewriting. This inherently
distributed architecture offers another key benefit: the ability to take advantage of both simple
distributed multiprocessing and SMP, offering choice to the software or application designer.

In comparison, systems based on a monolithic architecture can’t take full advantage of the real
concurrency offered by SMP systems. Monolithic kernels provide many services, such as file-system
and networking requests, within the locked kernel region. As a result, significant precautions must
be taken at the kernel level to ensure the monolithic kernel does not become a bottleneck when
used in an SMP configuration.

The Best of Both Worlds
When it comes to improving performance and scalability, SMP and other multiprocessing options
have their advantages and tradeoffs. For the system designer, the real issue is being able to choose
the best model for the job. Microkernel OS architectures gain the full benefits of the concurrency
offered by SMP hardware, allowing designers to add processing power and scalability to network
elements without increasing software development or compromising system density. Moreover, they
provide inherent support for distributed multiprocessing, allowing developers to create fault-tolerant
clusters that contain a mix of uniprocessor and SMP systems.

MEMORY PROTECTED

MEMORY PROTECTED

ROUTE MANAGER APPLICATION
Thread 1 Thread 2

FILE SYSTEM
Thread 1 Thread 2 Thread 1

HA MANAGER APPLICATION
Thread 1 Thread 2

TCP/IP
Thread 1 Thread 2 Thread 1

MESSAGE-PASSING BUS

QNX Neutrino Microkernel Architecture

Operating systems that contain a number

of cooperating components, such as the

QNX Neutrino microkernel RTOS, use separate

processes to run system services. Performance

can increase due to the number of independent

components that can operate concurrently

in multiprocessor CPU configurations.

SMP at a Glance

> 6 QNX Software Systems

QNX Neutrino Support for SMP
QNX Neutrino is the only commercial RTOS to support true symmetric multiprocessing: any thread
in any process can be scheduled to run on any processor of an SMP board. With QNX Neutrino, you
don’t have to hardcode SMP awareness into your applications, drivers, or protocol stacks. If a process
is multithreaded, its threads will be transparently scheduled onto the SMP board’s multiple CPUs.

With QNX Neutrino, you can:

> Use your SMP board of choice — choose from a rich variety of off-the-shelf SMP boards based
on MIPS, PowerPC, and x86 processors.

> Fine-tune performance using processor affinity — To optimize processor cache usage, QNX Neutrino
will always attempt to dispatch a thread to the processor where it last ran, when appropriate.
To help optimize cache usage even further, QNX Neutrino provides a processor affinity mask,
which lets you “lock” a thread to one or more specified processors.

> Make the most of every processor — Because QNX Neutrino can schedule any thread on any
processor, all processors can be utilized as fully as possible, ensuring the greatest possible
performance boost. And, unlike conventional OS kernels, the QNX Neutrino microkernel doesn’t
need large numbers of performance-robbing code modifications to support SMP. The SMP
microkernel is, in fact, just a few kilobytes larger than the standard microkernel.

> Build fault-tolerant clusters of immense processing power — By combining these SMP capabilities
with the distributed processing provided by QNX Neutrino, you can easily construct massive,
fault-tolerant clusters that integrate hundreds of uniprocessor and SMP systems. In fact, with
QNX Neutrino, you have the unique ability to target uniprocessor, SMP, and cluster systems
using just one set of application binaries.

> Improve performance — Improve performance on SMP-based systems with a suite of development
tools, including QNX system profiler and CPU-specific performance counters.

Built for Embedded Developers
The QNX Neutrino RTOS has everything you need to develop reliable, scalable, high-performance
embedded systems: a fault-resilient microkernel architecture... dynamic upgradability... distributed
processing... symmetric multiprocessing... a feature-rich GUI... proven realtime response... POSIX-
based portability... support for a wide range of processors and hardware... a comprehensive, yet
easy-to-use IDE – all delivered by one of the most service-conscious, customer-responsive companies
in the business. Contact us today to find out how QNX Neutrino can bring unprecedented reliability,
scalability, and performance to your next project.

QNX Software Systems 7 >

MICROKERNEL ARCHITECTURE
> Dynamically upgradable services and applications
> Fine-grained fault isolation and recovery
> Message-passing design for modular,

well-formed systems

DISTRIBUTED PROCESSING
> Transparent access to remote resources
> Simplified design of fault-tolerant clusters

SMP MICROKERNEL
> True SMP on MIPS, PowerPC, and x86
> Automatic scaling of multithreaded applications

INSTRUMENTED MICROKERNEL
> System-wide performance analysis and optimization
> Fast detection of timing conflicts, hidden faults, etc.

QNX PHOTON MICROGUI®

> Customizable look-and-feel
> Sophisticated multilayer displays
> Extensible multimedia framework

PROTOCOL STACKS
> NetBSD (IPsec, IPv6) and tiny TCP/IP stacks

FILE SYSTEMS
> Image, RAM, Flash, QNX, Linux, DOS, CD-ROM,

DVD, NFS, CIFS, Compression, Package

DEVICE DRIVERS
> Audio, character, disk, graphics, input,

networking, parallel, printer, serial, USB

HIGH AVAILABILITY MANAGER
> Heartbeating for early fault detection
> Intelligent restart of faulty components

JAVA
> Certified Java powered runtime environment
> Java applications have full access to OS services

PREDICTABLE REALTIME PERFORMANCE
> Preemptive scheduler with choice

of scheduling methods
> Distributed priority inheritance

POSIX SUPPORT
> POSIX 1003.1-2001, with threads and

realtime extensions

PROCESSOR SUPPORT
> ARM, MIPS, PowerPC, SH-4, StrongARM, XScale, x86

QNX MOMENTICS DEVELOPMENT SUITE
> Graphical IDE, BSPs, DDKs, and GNU tools
> Multi-host, multi-language, multi-target development

About QNX Software Systems
Founded in 1980, QNX Software Systems is the industry
leader in realtime, microkernel OS technology. The
inherent reliability, scalable architecture, and proven
performance of the QNX Neutrino RTOS make it the
most trusted foundation for future-ready applications
in the networking, automotive, medical, and industrial
automation markets. Companies worldwide like Cisco,
Ford, Johnson Controls, Siemens, and Texaco depend on
the QNX technology for their mission- and life-critical
applications. Headquartered in Ottawa, Canada, QNX
Software Systems maintains offices in North America,
Europe, and Asia, and distributes its products in more
than 100 countries worldwide.

QNX NEUTRINO AT A GLANCE

© June 2003, QNX Software Systems Ltd. All rights reserved. QNX, Momentics, Neutrino, and Photon microGUI are registered trademarks of QNX Software Systems Ltd.
in certain jurisdictions. All other trademarks and trade names belong to their respective owners. Printed in Canada. 301633 MC113.4

CONTACT QNX
NORTH AMERICA
175 Terence Matthews Cres.
Ottawa, Ontario
K2M 1W8
Canada
t: +1 800 676-0566
f: +1 613 591-3579
info@qnx.com
www.qnx.com

FRANCE
7 Rue Albert Einstein
Champs sur Marne
77420 Marne La Vallee,
France
t: +33 1 64 61 81 61
f: +33 1 64 61 81 62
info@qnx.fr
www.qnx.com

GERMANY
Am Listholze 76
D-30177 Hannover,
Germany
t: +49 511 940910
f: +49 511 94091199
info@qnx.de
www.qnx.de

JAPAN
4F Sanbancho KB-6 Bldg.,
6 Banchi, 3-Bancho,
Chiyoda-ku, Tokyo
102-0075
t: (03) 3511-6450
f: (03) 3511-6451
info@qnx.co.jp
www.qnx.co.jp

UNITED KINGDOM
2c Pembroke Avenue
Waterbeach Cambridge,
CB5 9QR
England
t: +44 (0) 1223 204800
f: +44 (0) 1223 204801
info@qnx.co.uk
www.qnx.com

