
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

Application and Window Management

©2012–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Tuesday, February 25, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: Introduction to Application and Window Management ..9

Chapter 2: HTML5 HMI ..11

Window management ..13

Application management ...15

Reference implementation ...16

Chapter 3: Qt5 HMI ...19

Window management ..21

Application management ...23

Chapter 4: Creating an Application Window Manager: Requirements ...25

Application and Window Management

Table of Contents

About This Guide

This document describes application and window management on the QNX CAR

platform.

All application developers should read this guide.

Go to:To find out about:

Introduction to Application and Window

Management (p. 9)

Application and window management in

the QNX CAR platform

HTML5 HMI (p. 11)Application and window management in

HTML5 HMI

Qt5 HMI (p. 19)Application and window management in

Qt5 HMI

Creating an application window manager:

Requirements (p. 25)

The PPS objects and system events that

a custom Application window manager

implementation must support

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Introduction to Application and Window Management

Application and Window Management describes the process of starting/stopping

applications and explains how windows interact with the HMI.

In this release, the QNX CAR platform comes with separate HMI implementations,

one of which is built with the Qt framework and the other with HTML5-related

technologies. Both HMI versions provide the same screen-switching functionality

through their taskbar. The implementations of application and window management

provide a useful reference for writing an HMI-based window manager suitable for

automotive systems.

Here is the summary of the key differences between the implementations of application

and window management:

Qt5 HMIHTML5 HMI

Application and window management is

managed by componments (Window

Application and window management is

managed by a separate Navigator

application. manager, Application manager) of the Qt5

HMI.

Each tab on the application and

management display area is associated

with different views of the same process.

Each tab on the application and

management display area is associated

with separate applications.

Virtual keyboard runs as a separate

process external to the Qt5 HMI.

Virtual keyboard runs in the Navigator

application.

Application and window management uses the Persistent Publish/Subscribe (PPS)

service to publish app information and to receive window data from certain apps,

which helps it display those apps. To render app windows, applications use the Screen

Graphics Subsystem. However, the mechanisms used to access these lower-level

services differ between the two HMIs.

Note that you can also write a generic window manager (which might not even render

any HMI components), and how to do so is explained in “Creating Your Own Application

Window Manager” in the QNX SDK for Apps and Media documentation.

For information about PPS objects that are specific to application and window

management (which can be found in /pps/system/navigator/), see the PPS

Objects Reference. For details on Screen, see the Screen Graphics Subsystem

Developer's Guide.

Copyright © 2014, QNX Software Systems Limited 9

Chapter 2
HTML5 HMI

In the HTML5 HMI, application and window management is managed by the Navigator

application. This application is implemented in JavaScript and uses WebWorks

extensions to access the PPS and Screen services.

The Navigator display area includes seven tabs that each access an app or group of

apps.

Here are the tabs on the Navigator display area:

• Push-to-Talk—activates Automatic Speech Recognition (ASR)

• Home—shows a consolidated view of several key apps

• Navigation—allows the user to interact with the currently active navigation engine

• Media Player—allows the user to play videos or music, or to listen to the radio

• Car Control—provides access to vehicle settings for audio, climate control, etc.

• Communications—provides access to email, text messages, contacts, and a

telephone dial pad

• Apps Section—shows the complete set of available apps

Figure 1: Home screen with Navigator taskbar

For more information about HTML5 and JavaScript support and the WebWorks

extensions in the QNX CAR platform, see HTML5 and JavaScript Framework.

Some of the WebWorks extensions that Navigator depends on are specific to Navigator.

These extensions provide a public API for Navigator (and other system components)

that includes functions, for example, to pause and resume an app. The Navigator

WebWorks extensions are defined in:

Copyright © 2014, QNX Software Systems Limited 11

path/html5/webworks/tools/BB10webworks-1.0.2.9/Framework/ext/navigator

The Navigator implementation is defined in:

path/html5/webworks/apps/Navigator/js

Prerequisite knowledge

To understand the HTML5 Navigator implementation, you must understand the

JavaScript programming language and the WebWorks Software Development Kit (SDK).

Advanced knowledge of JavaScript is required to understand the reference

implementation of Navigator and to develop new apps and services for the QNX CAR

platform. For more information about JavaScript, see

http://www.w3schools.com/js/default.asp.

WebWorks plays several roles in the platform software by providing:

• a packaging facility for HTML5 apps

• WebViews (described below)

• a mechanism for separating a public JavaScript API from a private implementation

A WebView is a view that is rendered by the web engine for displaying an app. Each

HTML5 app has its own WebView. Trusted apps are run “in process”, sharing a web

engine instance. Other apps are run “out of process”, protected from each other by

process boundaries, each with their own web engine instance.

12 Copyright © 2014, QNX Software Systems Limited

HTML5 HMI

http://www.w3schools.com/js/default.asp

Window management

The Navigator uses WebWorks to manage WebViews and jScreen to manage windows.

Managing WebViews

One of the roles of the Navigator is to manage WebViews. These WebViews are set up

by web applications that are run on the QNX CAR platform.

Currently, Cordova and WebWorks applications are supported. An application developer

supplies the application JavaScript code and any required plugins or extensions.

Cordova and WebWorks web applications are similar in structure and in how their

layers interact with user interface components.

Overlay (transparent)
Application

Controller (not visible)

HTML5 Framework
creates WebViews

HTML5 Framework Extensions/Plugins

HTML5 Framework

Application JS HTML5 Framework JS

Application HTML & JavaScript
i.e., webworks.js, cordova.js

WebViews

Figure 2: Web application structure and user interface components

The controller mechanism runs concurrently in an invisible WebView. The Controller,

the first app that is launched, has access to the WebLauncher API. This allows the

Controller to create other WebViews.

The app that is currently running is displayed in a visible WebView. A WebView can

be visible, invisible or transparent. A transparent WebView is always available to allow

notifications such as dialogs to appear over top of the application that is currently

running.

The visual layout and the logical layers of the user interface are shown in the figure

below. The status bar along the top and the taskbar along the bottom are always visible.

Several WebViews can be active simultaneously, but only one WebView can be visible

at a time.

Copyright © 2014, QNX Software Systems Limited 13

Window management

Overlay
Status

Active WebView

Inactive WebViews

Navigator
application

Controller WebView
(not visible)

Figure 3: HTML5 Navigator layout

Managing Windows

The Navigator is also responsible for the placement and appearance of application

windows. The Navigator uses the jScreen extension to communicate with Screen. The

Navigator has the role of the Screen window manager and therefore, has the ability to

manage their properties.

The Navigator deals with the application windows' z-order, transparency, positioning

on the physical display, and scaling through Screen API functions. For more information

on Screen, see Screen Graphics Subsystem Developer's Guide.

Once started, applications communicate directly with Screen from within their own

context. Applications manage their own windows through the Screen API.

14 Copyright © 2014, QNX Software Systems Limited

HTML5 HMI

Application management

Managing the application life cycle (starting and stopping applications) is achieved

through the launcher service by way of the Persistent Publish/Subscribe (PPS) service.

The HTML5 Navigator uses the JPPS extension to access PPS.

The figure below shows how an application is launched in the HTML5 Navigator:

1. A touch or ASR event triggers the Navigator to launch an application.

2. The Navigator communicates through its JPPS API to access PPS..

3. The Launcher reads the PPS object and begins launch procedures.

4. The Launcher asks the authorization manager to check permissions to launch the

application.

5. When it receives authorization, the Launcher completes the application launch.

Application
Launched via
HMI or ASR

HTML5 HMI

PPS

Navigator

JPPS
API

Authman

Application

Launcher

Figure 4: Step-by-step view of how HTML5 Navigator launches an application

Stopping an application follows a very similar flow to launching an application. The

same libraries and the Launcher is used to terminate the application. The stopping of

an application can be triggered by a touch or ASR event, or by the application itself.

Copyright © 2014, QNX Software Systems Limited 15

Application management

Reference implementation

The reference implementation of the HTML5 Navigator consists of seven JavaScript

files.

These files are located in this target image directory:

/apps/Navigator.devTest_Navigator__a4514a37/native/js/

The following table gives the key responsibilities of each file:

Table 1: Navigator implementation files

Key ResponsibilitiesFile

Navigator.Applications provides

functions that operate on apps, including

start, stop, show, and hide.

Applications.js

Navigator.EventDispatcher

provides functions for objects to register

EventDispatcher.js

listeners for events. This class is a base

class for Navigator.Applications,

Navigator.Status, Naviga

tor.Tabs, and Navigator.Voice.

Navigator.HNM registers PPS listeners

for:

HNM.js

• navigatorhnmstatus

• navigatorhnmnotification

Defines properties for an app's WebView

and layout.

index.js

Registers listeners for the following events

(defined in Navigator.Applica

tions):

• E_APP_STARTED

• E_APP_STOPPED

• E_APP_GROUP_COMPLETE

• E_APP_ERROR

• E_APP_COVER_CHANGE

Registers PPS listeners for:

16 Copyright © 2014, QNX Software Systems Limited

HTML5 HMI

Key ResponsibilitiesFile

• navigatorstartrequest

• navigatorstoprequest

Sets up infrastructure to permit

inheritance from JavaScript objects.

Navigator.js

Navigator.Tabs provides functions

that operate on tabs, including create,

remove, and highlight.

Tabs.js

Navigator.Voice provides functions

for updating the HMI based on the activity

Voice.js

of the voice subsystem, including select,

cancel, and addItem.

Copyright © 2014, QNX Software Systems Limited 17

Reference implementation

Chapter 3
Qt5 HMI

The Qt5 HMI is based on version 5.2 of the Qt framework and uses the QPPS library

to access PPS and talks directly to Screen through its C API.

The application and window management display area of the Qt5 HMI includes seven

tabs. Each tab is associated to a different view of the same process. The core view is

the display area with the status bar and taskbar.

Here are the tabs on the application and window management display area:

• Push-to-Talk—activates Automatic Speech Recognition (ASR)

• Home—shows a consolidated view of several key apps

• Navigation—allows the user to interact with the currently active navigation engine

• Media Player—allows the user to play videos or music, or to listen to the radio

• Car Control—provides access to vehicle settings for audio, climate control, etc.

• Communications—provides access to email, text messages, contacts, and a

telephone dial pad

• Apps Section—shows the complete set of available apps

Figure 5: Home screen (Core view) with application and window management taskbar

Prerequisite knowledge

To understand the Qt5 application and window management, you must be proficient

with C++ and understand the design and concept of the Qt framework, which provides

a toolset for writing UI-based native applications on embedded platforms. For more

information about Qt, see the Digia Qt Project website.

Copyright © 2014, QNX Software Systems Limited 19

http://qt.digia.com/Product/

If you want to customize the Qt5 application and window management, or write a

replacement using the same technologies, you must know how to use the Qt

development tools, particularly Qt Creator.

20 Copyright © 2014, QNX Software Systems Limited

Qt5 HMI

http://qt.digia.com/Product/Qt-Core-Features-Functions/Developer-Tools/

Window management

To manage windows, the Qt5 Window manager processes Screen events sent by

applications and uses the data in these events when communicating with Screen

through its API.

The Qt5 HMI consists of several different layers. These layers are essentially separate

Screen windows running in the same process. The layers of the Qt5 HMI are shown

in the figure below:

Hass
elhof

f St I-60

QNX
Blvd

Navigation
(EB nav overlay)

Core view

Weather widget

Status

Taskbar

Camera overlay

Extended
apps

ASR

Figure 6: Qt5 HMI layers

In the Core view, the tabs trigger different views that render to the same window. While

executing, extended apps are unaware of the activity of other extended apps and the

Core view. Each extended app or Core view continues to render its own HMI component,

whether or not it's currently displayed. It's up to the Qt5 Window manager to decide

how, when, and where to display the windows of the extended apps. At any time, either

one extended app or the Core view can be visible.

When active, the video feed from the rearview camera always becomes the top HMI

layer and thus, replaces the display of all other apps. When the user pushes the

Push-to-Talk button in the taskbar and starts an ASR session, the visual prompt for a

voice command is always displayed over the other apps (except the rearview camera

feed if it's active).

Next, any active extended app is displayed in the HMI midsection, which is the area

between the status bar along the top and the taskbar along the bottom. Although these

last two HMI components are rendered one layer lower, at the same level as the core

apps (e.g., Home, Media Player, Car Control), the status bar and taskbar are always

visible (except when the rearview camera feed is active). If no extended app is running,

the HMI midsection shows the active core view.

Copyright © 2014, QNX Software Systems Limited 21

Window management

Finally, when navigation is active, the animation of the map to reflect the driver's

turn-by-turn progress as they approach their destination is rendered on the bottom

HMI layer. This way, the map display is kept up to date on the navigation information

feed in the Home screen or whenever the user presses the Navigation button and

accesses the Navigation screen.

The Qt5 Window manager is responsible for the placement and appearance of

application windows. The Qt5 Window manager uses the Screen API to communicate

with Screen. The Qt5 Window manager has the role of the Screen window manager

and therefore, has the ability to manage their properties.

The Qt5 Window manager deals with the application windows' z-order, transparency,

positioning on the physical display, and scaling through Screen API functions. For

more information on Screen, see Screen Graphics Subsystem Developer's Guide.

Once started, applications communicate directly with Screen from within their own

context. Applications manage their own windows through the Screen API.

22 Copyright © 2014, QNX Software Systems Limited

Qt5 HMI

Application management

Managing the application life cycle (starting and stopping applications) in Qt5 HMI

is achieved through the Launcher API (QtQnxCar2 library) and the QPPS library.

The Qt5 Application manager uses the QPPS library to access PPS.

The figure below shows how an application is launched in the Qt5 Application manager:

1. A touch or ASR event triggers the Qt5 Application manager to launch an application.

2. The Qt5 Application manager communicates through the Launcher API (QtQnxCar2

library).

3. The Launcher API uses the QPPS library to access PPS..

4. The Launcher reads the PPS object and begins launch procedures.

5. The Launcher asks the authorization manager to check permissions to launch the

application.

6. When it receives authorization, the Launcher completes the application launch.

Qt HMI

PPS

Application Manager

QPPS API

Authman Application

Launcher

Launcher API

Application
Launched via
HMI or ASR

Figure 7: Step-by-step view of how Qt5 application manager launches an application

Stopping an application follows a very similar flow to launching an application. The

same libraries and the Launcher is used to terminate the application. The stopping of

an application can be triggered by a touch or ASR event, or by the application itself.

Copyright © 2014, QNX Software Systems Limited 23

Application management

Chapter 4
Creating an Application Window Manager: Requirements

You can replace the application and window management with a custom

implementation, provided that it supports the current external interfaces.

Your replacement implementation must:

• publish to the same PPS objects

• subscribe to the same PPS objects and handle state changes appropriately

• register with the platform for the same events

Application window manager interfaces

Application window manager publishes to the following PPS objects:

• /pps/system/navigator/appdata

• /pps/system/navigator/command

• /pps/services/launcher/control

Application window manager subscribes to the following PPS objects:

• /pps/system/navigator/applications/applications

• /pps/services/app-launcher

• /pps/services/launcher/control

Application window manager listens for the following system events:

• navigatorappstarted

• navigatorappstopped

• navigatorapperror

• navigatorstartrequest

• navigatorstoprequest

• voicestate

• voiceresult

Copyright © 2014, QNX Software Systems Limited 25

Index

A

Application and Window management 11
HTML5 implementation 11

Application and Window Management 9, 11, 19, 21, 23
Qt5 HMI 21, 23

application management 23
window management 21

tabs 11, 19

N

Navigator 13, 15, 16, 25
custom replacement 25
HTML5 HMI 13, 15

application management 15
window management 13

Navigator (continued)
HTML5 implementation 16

reference JavaScript files 16
PPS objects 25
system events 25

T

Technical support 8
Typographical conventions 6

W

WebView 12
WebWorks 12

Copyright © 2014, QNX Software Systems Limited 27

Application and Window Management

28 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Introduction to Application and Window Management
	HTML5 HMI
	Window management
	Application management
	Reference implementation

	Qt5 HMI
	Window management
	Application management

	Creating an Application Window Manager: Requirements
	Index

