
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

System Services Reference

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Tuesday, August 19, 2014

Table of Contents

About This Reference ...7
Typographical conventions ...9

Technical support ...11

Chapter 1: Artwork Client (artwork_client_car2) ..13

Chapter 2: Audio Management ..15

Audio manager PPS objects ...17

Chapter 3: Certificate Management ..19

Chapter 4: Geolocation ...23

Chapter 5: Handsfree Telephony ..25

Handsfree telephony in QNX CAR ...26

Processing the handsfree call ...29

io-acoustic ..30

Configuring io-acoustic ..31

Configuration keys ...32

Example configurations ..36

Acoustic processing tuning files (.qcf) ...38

Remote control server (RCS) ..39

Using the io-acoustic API ..42

io-acoustic API ...44

IOAP_* type definitions ..44

IOAP_HF_EVENT_* ...46

ioap_device_t ..47

ioap_event_t ...48

ioap_event_next() ..49

ioap_hf_attach() ..50

ioap_hf_config() ..51

ioap_hf_get_latency_estimate() ...52

ioap_hf_get_log_level() ..54

ioap_hf_get_output_volume() ..55

ioap_hf_go() ..56

ioap_hf_latency_estimate_t ..58

ioap_hf_latency_test_t ...59

ioap_hf_mute() ..59

ioap_hf_prepare() ..61

System Services Reference

ioap_hf_read_events() ..63

ioap_hf_register_events() ..64

ioap_hf_route() ..66

ioap_hf_set_log_level() ...68

ioap_hf_set_output_volume() ..69

ioap_hf_setup() ...70

ioap_hf_setup_t ..72

ioap_hf_start_latency_test() ..72

ioap_hf_stop() ...74

ioap_io_map_t ..75

Chapter 6: Image Generation ...77

gen-ifs ...78

gen-osversion ...80

mkimage.py ...82

mksysimage.py ...84

mktar ..87

Chapter 7: Keyboard ...91

Keyboard (keyboard-imf) ..93

Chapter 8: MirrorLink ...95

The mlink-daemon service—discoverer, launcher, and audiorouter98

The mlink-rtp service—RTP audio streaming ...101

The mlink-viewer service—MirrorLink viewer app ...102

Chapter 9: Navigation Engine ..105

Chapter 10: Network Manager (net_pps) ..107

Chapter 11: Now Playing Service ...109

Using the now playing service ..111

Now playing service PPS objects ..113

Now Playing Service (nowplaying) ...114

Chapter 12: Radio ..115

RadioApp ...116

Chapter 13: Realtime Clock Synchronization ..117

Chapter 14: Shutdown service (coreServices2) ..119

Table of Contents

Chapter 15: Software Updates ...123

Software update core library ..124

Architecture of swu-core library ...124

Key concepts of the library ...126

How software update applications integrate with swu-core129

Manifest file ...139

SWU library API ..142

Software update daemon ...235

swud ...235

Loading swud modules ...236

Developing swud modules ..237

Reference modules ..238

Generating a delta file ...241

SWU module API ..244

Chapter 16: System Launch and Monitor (SLM) ..247

Chapter 17: Tether Manager (tetherman) ..249

Chapter 18: Wi-Fi configuration (wpa_pps) ...251

System Services Reference

Table of Contents

About This Reference

The System Services Reference lists the main services available on the QNX CAR

platform. This reference describes each of these services and, where applicable, how

to configure and run them.

See:To find out about:

Artwork client (p. 13)The artword client

(artwork_client_car2) for retrieving

album art

Audio management (p. 15)Audio services (audioman, nowplaying)

Certificate management (p. 19)Certificate management

Geolocation (p. 23)Geolocation

Handsfree Telephony (p. 25)Handsfree telephony with acoustic

processing, including acoustic echo

cancellation

Image Generation (p. 77)Image generation (mksysimage.py and

other utilities)

Keyboard (p. 91)Keyboard (keyboard-imf)

MirrorLink (p. 95)Using the car's HMI to view and control

MirrorLink apps on a smartphone

Navigation Engine (p. 105)Enabling the navigation engine

Network manager (net_pps) (p. 107)Setting up networking

Now Playing Service (nowplaying) (p.

109)

Making sure that different media players

(including phones) and media controllers

don't clash

Radio (p. 115)Radio (TI SDR)

Realtime Clock Synchronization (p. 117)Using the realtime clock

Shutdown service (coreServices2) (p.

119)

Shutting down

Software updates (p. 123)Writing a software update application

based on the update library shipped with

the platform

System Launch andMonitor (SLM) (p. 247)Managing the launch order of processes

at startup

© 2014, QNX Software Systems Limited 7

See:To find out about:

Tether manager (tetherman) (p. 249)Tethering portable devices

Wi-Fi configuration (wpa_pps) (p. 251)Wi-Fi (WPA) configuration

8 © 2014, QNX Software Systems Limited

About This Reference

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

© 2014, QNX Software Systems Limited 9

Typographical conventions

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

10 © 2014, QNX Software Systems Limited

About This Reference

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

© 2014, QNX Software Systems Limited 11

Technical support

http://www.qnx.com

Chapter 1
Artwork Client (artwork_client_car2)

Retrieve multimedia artwork.

Syntax:

artwork_client_car2 -p tmp_path -c cache_path
 [-n client_name] [-s cache_size]
 [-w write_frequency] [-l max_lookups] [-t]

Runs on:

QNX Neutrino

Options:

-p tmp_path

The path to the temporary location where artwork will be placed.

-c cache_path

The path to the artwork cache to be used.

-n client_name

The name of the artwork client. Default is albumart_client.

-s cache_size

The size of the artwork cache, in bytes. Default is 1 MB.

-w write_frequency

The frequency, in milliseconds, for the artwork client to write to persistent

storage. Default is 100.

-l max_lookups

The maximum number of artwork items that the artwork client will look up

and store. Default is 100.

-t

Generate thumbnails. Default is false.

© 2014, QNX Software Systems Limited 13

Description:

The artwork_client_car2 service retrieves album artwork. SLM starts this service

at system startup.

14 © 2014, QNX Software Systems Limited

Artwork Client (artwork_client_car2)

Chapter 2
Audio Management

The QNX CAR platform uses the audio manager to route audio streams to output

devices, and the audio manager and the now playing service to manage the behavior

of concurrent audio streams.

Overview

The QNX CAR platform supports diverse audio stream types (sound effects, ringtones,

media from a media player, etc.). Each audio stream type must be routed to the most

appropriate output device (speakers, headphones, etc.). When two or more audio

streams request access to an output device, applications must know which audio

stream takes priority, and what should be done with the other audio streams so that:

• the audio stream with the highest priority takes precedence and has access to the

preferred output device(s)

• other audio streams are attenuated or muted, as required by the system

configuration

• media playback is stopped or paused when an audio stream is “ducked” in favor

of a higher priority audio stream, and restarted when appropriate

Applications implemented on the QNX CAR platform should use the audio manager

to route audio streams to their preferred output devices, and to attenuate or mute

audio streams when higher-priorty audio stream types open, based on the configuration.

The audio manager doesn't pause or stop audio playback, however. For example, the

audio manager may mute media playback when the telephone rings, but the media

will continue playing. Applications should use the now playing service to manage

pausing and stopping playback.

Audio manager

The audio manager and its library of functions and data structures provide:

• automatic routing, and manual routing of the PCM preferred path

• audio stream type identification

• audio concurrency policy (ducking) management

• audio device monitoring and mounting (e.g., headset, A2DP, HDMI)

For more detailed information about using the audio manager, see Audio Manager

Library Reference. For information about the PPS objects used by the audio manager

in QNX CAR, see “Audio manager PPS objects”.

© 2014, QNX Software Systems Limited 15

Now playing service

The now playing service (nowplaying) can be used along with the audio manager to

manage audio stream concurrency. It supports two distinct PPS interfaces, one for

media players (including phones), and one for media controllers.

All media players and media controllers on a system should register with the now

playing service and subscribe and publish to the relevant PPS objects in order to know

what other media players and controllers are doing, and to let other players and

controllers know what they are doing.

For more detailed information about using the now playing service, see “Now Playing

Service”.

16 © 2014, QNX Software Systems Limited

Audio Management

Audio manager PPS objects

The audio manager uses PPS objects to communicate with other system components

and third-party applications.

The audio manager uses the PPS objects listed below. For information about these

objects, see the relevant pages in the PPS Objects Reference.

• /pps/services/audio/audio_router_control

• /pps/services/audio/audio_router_status

• /pps/services/audio/control

• /pps/services/audio/devices/

• /pps/services/audio/mixer

• /pps/services/audio/status

• /pps/services/audio/types/

• /pps/services/audio/voice_status

© 2014, QNX Software Systems Limited 17

Audio manager PPS objects

Chapter 3
Certificate Management

Certificate management is handled by a service available to client applications that

need to validate certificates and private keys for operations such as VPN access, Wi-Fi

access, and SSL webpage access.

Overview

The certificate manager service (certmgr_pps) provides a centralized service that

offers certificate and private key-related operations to services and applications, such

as S/MIME, VPN, Wi-Fi and the web browser. In this QNX CAR release, certificate

management is used only by the web browser for authenticating SSL website

certificates.

Adding a certificate

Certificates are stored at /var/certmgr. This directory includes subdirectories for

the various services and applications that require certification management. Each

sub-directory contains user_trusted directory sub-directories with the trusted

certificates. For example: /var/certmgr/web/user_trusted/.

PPS objects

The certification manager uses the following PPS object:

/pps/services/certmgr/control. With the current release, this object is used

only for QNX CAR internal communications; third-party applications don't need to

publish or subscribe to it.

Browser behavior

The images below show how the browser displays information about certificates to the

user.

© 2014, QNX Software Systems Limited 19

Figure 1: The browser on a page with an authenticated certificate. To the left of the

URL, the blue lock icon indicates that the certificate manager authenticated the page's

certificate.

Figure 2: The warning shown by the browser when it encounters a website whose

certificate it can't authenticate.

20 © 2014, QNX Software Systems Limited

Certificate Management

Figure 3: The browser inteface that allows the user to choose to allow a webpage with

an unauthenticated certificate to load.

Figure 4: A webpage with an unauthenticated certificate. To the left of the URL, the

red exclamation mark indicates that the certificate manager couldn't authenticate the

page's certificate.

© 2014, QNX Software Systems Limited 21

Chapter 4
Geolocation

The Geolocation service provides the current location of the client based on its IP

address.

Upon receipt of a location request message from the client, the Geolocation service

queries http://www.hostip.info to get the current location, based on the client's IP

address. The correctness of the result depends on the contents of the database that

hostip.info provides. If the client's IP isn't in the database, an incorrect location

might be returned.

Client queries about location information can be made using the following PPS

command:

(exec 3<>/pps/services/geolocation/control?wait && echo 'msg::
location\nid::test\ndat:json:
{"period":5.0,"provider":"network","fix_type":"wifi"}
' >&3 &&
cat <&3)

where period specifies the interval between updates from the server. If the period is

0 then the update is provided only once. The Geolocation service responds to the client

in the following format in the control object:

@control
res::location
id::test
dat:json:{"accuracy":60,"latitude":45.3333,"longitude":-75.9}

The QNX CAR browser also uses the Geolocation service to query the location as shown

above.

The Geolocation service is multithreaded and can handle requests from multiple clients

at the same time.

For more information about the PPS objects the Geolocation service uses, see these

entries in the PPS Objects Reference:

• /pps/services/geolocation/control

• /pps/services/geolocation/status

© 2014, QNX Software Systems Limited 23

http://www.hostip.info

Chapter 5
Handsfree Telephony

The QNX CAR platform includes support for handsfree telephony using the io-acoustic

resource manager.

Why is acoustic processing necessary?

During an automotive handsfree call, the voice of the far-side speaker (the caller at

the remote end of the conversation) is played out over the vehicle loudspeakers and

is picked up on the near-side microphone along with the driver's voice. If they are not

attenuated, the far-side speaker's words as well as background noise are audible to

the far-side speaker as an echo repeating his or her voice and the noise. Acoustic echo

cancellation is therefore required to maintain acceptable sound quality and intelligibility

during a handsfree call.

The automobile can be an acoustically hostile environment for capturing speech signals.

Road, traffic, and engine noises tend to mask speech signals, and requirements for

microphone positioning can leave the voice almost hidden by noise. The result can be

a telephone conversation that is tiring to listen to or difficult to understand. To further

complicate matters, the noise in a car is dynamic, changing its loudness and frequency

content due to many factors, including road surface, vehicle speed, open or closed

windows, and so on. Acoustic noise reduction improves the subjective quality and the

objective intelligibility of speech signals by removing unwanted noise and distortion

and enhancing the speech.

In automotive environments, variation in loudspeaker and microphone placement can

create a very complicated acoustic path. For instance:

• The echo may be several times louder than the near-side speaker's speech.

• The echo may traverse moving bodies before arriving at the microphone, making

it difficult to prediction and cancel.

Acoustic echoes can also be a problem in more conventional handsfree speaker phones

and handheld phones (including mobile phones), where the loudspeaker and

microphone are in the same physical housing.

Acoustic echo cancellation is part of the QNX Acoustic Processing Suite 2.0.

Your QNX representative can provide you with documentation for the complete

suite, as well as assistance implementing and tuning AEC and other acoustic

processing features in your project and production vehicles.

© 2014, QNX Software Systems Limited 25

http://www.qnx.com/company/contact/

Handsfree telephony in QNX CAR

Handsfree telephony in the QNX CAR platform uses the io-audio, io-acoustic,

and io-bluetooth services.

Overview

The QNX CAR platform includes support for handsfree telephony, including acoustic

echo cancellation (AEC), and handsfree Bluetooth phone support implemented on its

reference boards. It uses acoustic echo cancellation to:

• extract voice from cabin noise created by road services, construction, engines,

wind, rain, and other vehicles

• improve the clarity, quality, and accuracy of voice communication

• enhance the performance of in-car handsfree communication and speech recognition

Bluetooth

io-bluetooth

io-audioio-audio
/dev/snd/

io-acoustic

acoustic.config

MCBSP

MCBSP
or MCASP

Hardware
connection

Software
Hardware

PDM/PCM

Board specific
audio configuration

Client handsfree
application

Sound card

PCM

pps-bluetooth

libacoustic

HCI
serial driver

Figure 5: Overview of echo cancellation for a Bluetooth handsfree connection

The figure above shows how handsfree telephony is implemented on the QNX CAR

platform.

You may want to configure your implementation by adjusting the parameters in the

io-acoustic configuration file. You will only need to use the io-acoustic API

(p. 44) if you replace io-bluetooth with your own custom Bluetooth service.

Far-side speech

The far-side speech is processed as follows:

26 © 2014, QNX Software Systems Limited

Handsfree Telephony

1. The io-bluetooth process uses Bluetooth to connect the in-vehicle system and

the cell phone, and uses the libacoustic library to configure and control

io-acoustic.

2. The audio stream passes through the board's on-chip Bluetooth module and its

on-chip multi-channel buffered serial port (MCBSP).

3. The io-acoustic resource manager uses QNX acoustic processing to enhance

the received audio signal to compensate for vehicle cabin acoustics and noise, and

increase intelligibility. From the MCBSP, the audio stream is routed through

io-audio, then io-acoustic, which uses a board-specific configuration file

(acoustic.conf). This file sets parameters such as the number of input and

output channels and devices, the audio stream route, and the compensation for

system latency. It also specifies an acoustic tuning file, which can be tailored for

the expected acoustic environment.

4. io-acoustic returns the stream to io-audio, which passes it on to the sound

card for output to the loudspeakers.

Near-side speech and acoustic echo

The near-side speech and the acoustic echo are processed as follows:

1. Near-side speech and the acoustic echo from the loudspeakers picked up by the

in-vehicle microphones are routed back through io-audio, io-acoustic, and

the on-chip MCBSP and Bluetooth processing.

2. The io-acoustic resource manager uses the QNX AAP component to attenuate

the echo and clarify the speech. See “Processing the handsfree call (p. 29)” for

more detailed information about how the QNX acoustic processing library processes

the input and output signals of a handsfree call.

Who needs to use the io-acoustic API?

The QNX CAR platform is delivered with ready-to-use handsfree telephony. The included

io-bluetooth service included in the platform uses the io-acoustic API to

manage the acoustic processing for handsfree telephony. Thus, you will need to use

the io-acoustic API only if:

• you replace the included io-bluetooth with your own Bluetooth service

or

• you write your own program to do latency tests using the ioap_hf_latency_*()

functions in the io-acoustic API.

If you write an application to perform latency tests, you will still need to use

io-bluetooth to start and stop the call and its audio.

© 2014, QNX Software Systems Limited 27

Handsfree telephony in QNX CAR

Only one service should ever use io-acoustic. Do not attempt to use

both io-bluetooth and your own Bluetooth service to control

io-acoustic. Attempting to do so will lead to unpredicable results.

28 © 2014, QNX Software Systems Limited

Handsfree Telephony

Processing the handsfree call

The QNX CAR acoustic processing module uses reference signals, and processes input

and output signals to improve the sound quality and intelligibility of handsfree calls.

The figure below shows a simplified view of handsfree acoustic echo cancellation

through the QNX acoustic processing module:

1. On the near-side (in the vehicle), one or more microphone signals are input for

send-signal processing.

2. The audio signal received from the far-side of the conversation is processed to

improve sound quality before it is output to the local system.

3. The send-signal processing produces an echo-free and noise-reduced output signal,

which is sent to the remote system.

Send
processing

Beam forming/
Acoustic echo
cancellation

Near-side

Far-side

Microphone
output

n microphone inputs

Cell
phone

AAP library

Receive processingAmplifier
Receive
output

Figure 6: Input and output signals in handsfree telephony

© 2014, QNX Software Systems Limited 29

Processing the handsfree call

io-acoustic

Provide integrated access to acoustic processing capabilities, including acoustic echo

cancellation (AEC) and noise reduction (NR)

Syntax:

io-acoustic [-c filepath] [-f] [-n filepath]
 [-t threads] -u UID:GID [-v]

Options:

-c filepath

Location of the io-acoustic configuration file. The default location is

/etc/acoustic/acoustic.conf.

-f

Run io-acoustic in the foreground, not as a daemon.

-n

Set the prefix for the io-acoustic mount location. For example: io-

acoustic -n /dev/newplace. Default mount location is

/dev/io-acoustic.

-t threads

The number of threads to reserve for io-acoustic. Default is 16.

-u

Force io-acoustic to run under a specific user ID and group ID, and,

optionally, multiple supplementary group IDs (SGIDs). For example, to set

the user ID to “devuser” use: io-acoustic -u devuser:25. Or, To run

as user with UID 10 under primary group ID 80, and inherit the capabilities

of groups 80, 81 and 82, use: io-acoustic -u 80:10:80,81,82.

-v

Increase output verbosity (messages are written to sloginfo). The -v

option is cumulative; each additional v adds a level of verbosity, up to 7

levels. For example, io-acoustic -vvv sets verbosity to 3. Default is 2.

30 © 2014, QNX Software Systems Limited

Handsfree Telephony

Description:

The io-acoustic resource manager integrates QNX acoustic echo cancellation (AEC)

and noise reduction (NR) into the QNX CAR platform. It uses QNX's acoustic processing

(AAP) library to perform multichannel signal preprocessing for handsfree (HF) systems.

The QNX CAR platform includes configuration files for each reference board on which

it has been implemented. These files are preset for optimal performance and sound

quality, given the assumptions QNX was able to make about the environment in which

the platform will be used. These settings can be changed by editing the relevant

configuration file.

The prefix, number of threads, and verbosity can be set in the configuration

file. If these options are set in the configuration file, io-acoustic ignores

the values entered on the command line.

For information, see “Configuring io-acoustic”.

Configuring io-acoustic

The QNX CAR platform acoustic echo cancellation component includes a configuration

file with keys for configuring io-acoustic.

About configuring io-acoustic

The io-acoustic resource manager gets its configuration keys from a configuration

file. This file sets up the mapping between the hardware devices on your system and

the acoustic processing inputs and outputs, as well as other operational parameters.

It is a plain-text file with a series of key-value pairs, separated by module markers.

The QNX CAR platform is shipped with a default configuration file for the current

reference board. The keys in this file are preset for optimal performance and sound

quality, given the assumptions QNX was able to make about the environment in which

the platform will be used. The default configuration file is

/etc/acoustic/acoustic.conf.

You can specifiy another configuration file by using the -c at startup. You can also

change some other keys at startup. For more information, see the io-acoustic

startup options (p. 30).

The prefix, number of threads, and verbosity can be set in the configuration file or

with the command line at startup. However, if these options are set in the configuration

file, io-acoustic ignores the values entered at startup.

© 2014, QNX Software Systems Limited 31

io-acoustic

About routing

When io-acoustic starts up it uses the routing specified in its configuration file.

If the routing specified in this file fails, then the routing will fall back to the following

configuration, using the system-preferred input and output devices:

Direction

Phone inMicrophone inInput

Channel 2 mapped to

IOAP_PHONE_IN_1.

Channel 1 mapped to

IOAP_MIC_IN_1.

Phone outSpeaker outOutput

Channel 1 mapped to

IOAP_PHONE_OUT_1.

Channel 2 mapped to

IOAP_SPK_OUT_1.

Since the name of the Bluetooth audio interface varies from system to system, this

default routing doesn't configure audio to flow through Bluetooth. However, the routing

specified in acoustic.conf should be correct for the reference board on which the

QNX CAR platform has been implemented, given the assumptions QNX was able to

make about the board and the environment in which it will be used.

For information about configuring other acoustic processing parameters, see

“Configuration keys (p. 32)” below.

Configuration keys

The io-acoustic resource manager configuration file keys can be edited to tune

acoustic echo cancellation for handsfree telephony.

The tables below list and describe the keys that can be included in an io-acoustic

configuration file, their default values, and valid values or ranges of values:

Global

DefaultDescriptionKey

n/aComment line. Text on a line starting with “#” is considered

a comment and ignored.

comment

-1Log location. 1=stdout, 2=stderr, -1=slog. Default is -1, system

log.

logfd logfile_descriptor

2Verbosity level: 0-7. Higher values mean more information is

logged by io-acoustic regarding warnings, errors and

operational events. Default is 2, errors only.

verbose verbosity_level

16Number of threads in thread pool.threads number_of_threads

32 © 2014, QNX Software Systems Limited

Handsfree Telephony

DefaultDescriptionKey

/dev/io-acousticInstallation path prefix for io-acoustic modules.prefix module_prefix

18Priority of the audio processing threads.audiothreadpriority priority

Module markers

DefaultDescriptionKey

n/aStart marker for handsfree configuration, with apm-aap-hf.so

as the associated DLL name, and hf as the mount location. If

<hf apm-aap-hf.so>

the default prefix is used, the HF module will be mounted at

/dev/io-acoustic/hf.

n/aHandsfree configuration end marker.</hf>

HF module audio routing

DefaultDescriptionKey

1Number of input devices to open (1 to 4). Default is 1, with 2

channels open, the first mapped to IOAP_MIC_IN_1 and the

second to IOAP_PHONE_IN_1.

inputs number_of_devices

Preferred devicePath for input device X. If no path is specified, the preferred

device will be used. If there are multiple devices with both

ipathX device_path

microphone and reference inputs to route, devices with

microphone inputs should be routed first.

See inputsNumber of audio channels to open from input device X (1 to

4). This key must be specified for each input device. The

ichannelsX

number_of_channels

minimum number of channels across all devices is 2 (one

microphone, and one phone or reference). The maximum

number of channels for the system 4 (two microphones, one

phone and one reference).

See inputsAcoustic processing input to route from channel Y of input

device X. This key must be specified for each input device

irouteX_Y route

channel. Can be any of IOAP_MIC_IN_1 IOAP_MIC_IN_2,

IOAP_REF_IN_1, or IOAP_PHONE_IN_1.

1Number of output devices to open (1 or 2). Default is 1, with

2 channels open, the first mapped to IOAP_PHONE_OUT_1

and the second to IOAP_SPKR_OUT_1.

outputs number_of_devices

Preferred devicePath for output device X. If no path specified, the preferred

device will be used.

opathX device_path

© 2014, QNX Software Systems Limited 33

io-acoustic

DefaultDescriptionKey

See outputsNumber of audio channels to open from output device X. Can

be 1 or 2. This key must be specified for each output device.

ochannelsX

number_of_channels

The minimum number of channels across all devices is 1 (one

phone out). The maximum number is 2 (one phone out and

one speaker out).

See outputsAcoustic processing output to route to channel Y of output

device X. This key must be specified for each output device

orouteX_Y route

channel. It can be either IOAP_SPKR_OUT_1 or

IOAP_PHONE_OUT_1.

Timing

DefaultDescriptionKey

100The time (in milliseconds) to prime speaker output on “go” in

order to compensate for system latency. This time period is

msprime prime_time_in_ms

platform specific. To achieve best system latency, it should be

adjusted to the shortest time possible (that is, the shortest

time period that is sufficient to prevent underruns).

30The time (in milliseconds) to prime phone output on “go” in

order to compensate for system latency. This time period is

msphoneprime

prime_time_in_ms

platform specific. To achieve best system latency, it should be

adjusted to the shortest time possible (that is, the shortest

time period that is sufficient to prevent underruns).

0The time (in milliseconds) to add to the msprime value to

compensate for audio system latencies. This time is the

msrefdelta_default

delta_time_in_ms

difference between the value measured using the latency test

and the value specified by msprime.

Fragment size

DefaultDescriptionKey

1Number of acoustic processing frames per audio fragment. The

larger the number, the greater the delay; the lower the number,

the higher the CPU load. Must be 1 or greater.

framesperfrag

number_of_ap_frames

Tuning

DefaultDescriptionKey

n/aPath to acoustic processing tuning file.qcf file_path

34 © 2014, QNX Software Systems Limited

Handsfree Telephony

DefaultDescriptionKey

n/aPath to an alternate acoustic processing tuning file to load

instead of the file specified by the qcf parameter, if RCS (p.

39) is enabled.

qcf_rcs file_path

-20Minimum (0%) volume to use if no device-specific key is

available.

dbminvol_default

volume_in_dB

10Maximum (100%) volume.dbmaxvol_default

volume_in_dB

RCS

DefaultDescriptionKey

n/aSet to “true” to enable the RCS server in io-acoustic; any

other value is ignored. The server by default is disabled; only

rcsactive true

enable it if you are using a io-acoustic build with RCS

enabled and are using QWALive to tune the acoustic processing.

4000TCP/IP port for RCS server.rcsport port_number

Other

DefaultDescriptionKey

falseSet to “true” to enable the io-audio router plugin. When the

router plugin is enabled, the preferred device will be

automatically changed when a new device is connected.

autoroute true|false

falseEnable manual volume control. The default (false) puts the

volume level at a fixed-value specified by the tuning file.

volumecontrol true|false

service. Set to true to enable the “set volume” API function

and allow the application to get and set the volume level during

and between calls.

reprepareSet how audio overruns and underruns are handled. The default

reprepare only resets audio processing back to a default

onaudioerr

reprepare|restart

state after an audio error. Set to restart to force a full audio

restart on an audio error. The restart mode is slower, but is

safer when using an unstable audio driver because in some

cases, a reprepare operation can lock the audio device.

© 2014, QNX Software Systems Limited 35

io-acoustic

Example configurations

Examples of io-acoustic configuration files are useful when learning to tune

acoustic echo cancellation.

You can refer to the examples below to help you better understand how to edit your

io-acoustic configuration file.

Single device input and output

The following simple configuration file configures only the io-acoustic handsfree

module.

Single device input and output

logfd 2
verbose 6
<hf apm-aap-hf.so>
 inputs 1
 ichannels1 2
 iroute1_1 IOAP_MIC_IN_1
 iroute1_2 IOAP_PHONE_IN_1
 outputs 1
 ochannels1 2
 oroute1_1 IOAP_PHONE_OUT_1
 oroute1_2 IOAP_SPKR_OUT_1
 qcf /etc/acoustic/mono.qcf
 msprime 30
</hf>

This example assumes that the mono.qcf acoustic processing configuration file

specifies mono operation. It instructs io-acoustic to open one stereo input device

and one stereo output device. For more information , see “Acoustic processing tuning

files (.qcf) (p. 38)”.

The two input device channels are mapped to microphone 1 and phone input 1 of the

acoustic processing library, and the two output device channels are mapped to speaker

output 1 and phone output 1. Because no path to a device is specified in the routings,

the preferred input and output devices are used.

In addition, this file configures logging, specifies the location of an acoustic processing

configuration file, and configures the speaker output zero-priming.

The table below provides a line-by-line description of the configuration file:

Effect of settingKey

Direct logging to standard error.logfd 2

Increase verbosity to level 6.verbose 6

Start marker for hands-free configuration.hf apm-aap-hf.so

Open one input device.inputs 1

36 © 2014, QNX Software Systems Limited

Handsfree Telephony

Effect of settingKey

Open 2 channels for input device 1.ichannels1 2

Route channel 1 of input device 1 to acoustic processing input

IOAP_MIC_IN_1.

iroute1_1 IOAP_MIC_IN_1

Route channel 2 of input device 1 to acoustic processing input

IOAP_PHONE_IN_1.

iroute1_2 IOAP_PHONE_IN_1

Open one output device.outputs 1

Open 2 channels for output device 1.ochannels1 2

Route acoustic processing output IOAP_PHONE_OUT_1 to channel

1 of output device 1.

oroute1_1 IOAP_PHONE_OUT_1

Route acoustic processing output IOAP_SPKR_OUT_1 to channel 2

of output device 1.

oroute1_2 IOAP_SPKR_OUT_1

Use /etc/acoustic/mono.qcf as the acoustic processing tuning file.qcf /etc/acoustic/mono.qcf

Prime speaker output with 30 milliseconds of zeroes on “go” to

compensate for system latency.

msprime 30

End marker for handsfree configuration./hf

Two input devices, two output devices

This configuration file uses two separate input devices and two separate output devices.

Mono input, mono output

<hf apm-aap-hf.so>
 inputs 2
 ichannels1 1
 iroute1_1 IOAP_MIC_IN_1
 ipath2 /dev/snd/pcmC1D0c
 ichannels2 1
 iroute2_1 IOAP_PHONE_IN_1
 outputs 2
 ochannels1 1
 oroute1_1 IOAP_SPKR_OUT_1
 opath2 /dev/snd/pcmC1D0p
 odevice2 0
 ochannels2 1
 oroute2_1 IOAP_PHONE_OUT_1
 qcf /etc/acoustic/mono.qcf
 msprime 30
</hf>

© 2014, QNX Software Systems Limited 37

io-acoustic

Two microphone inputs, a reference input, separate phone and output devices

This configuration file use two microphone inputs, a reference input, and separate

phone input and output devices. The mixer.qcf tuning file should configure the

acoustic processing to mix the two microphone inputs as part of its processing.

Dual mic input, mono output

<hf aap-apm-hf.so>
 inputs 3
 ichannels1 2
 iroute1_1 IOAP_MIC_IN_1
 iroute1_2 IOAP_MIC_IN_2
 ipath2 /dev/snd/pcmC1D0c
 ichannels2 1
 iroute2_1 IOAP_REF_IN_1
 ipath3 /dev/snd/pcmC2D0c
 ichannels3 1
 iroute3_1 IOAP_PHONE_IN_1
 outputs 2
 ochannels1 1
 oroute1_1 IOAP_SPKR_OUT_1
 opath2 /dev/snd/pcmC1D0p
 ochannels2 1
 oroute2_1 IOAP_PHONE_OUT_1
 qcf /etc/acoustic/mixer.qcf
 msprime 30
 </hf>

Acoustic processing tuning files (.qcf)

The QNX CAR platform handsfree telephony component includes a configuration file

with keys for tuning io-acoustic.

The QNX acoustic processing module uses binary configuration files to tailor the

acoustics (AAP) library for specific vehicle environments. These files are placed in the

/etc/acoustic/ directory, and are identifiable by their .qcf extension. You are

note required to use an acoustic processing file when implementing a system built on

the QNX CAR platform. However, we recommend that you use one in order to be able

to tune your acoustic processing for the best possible performance in your vehicles'

acoustic environments.

If your acoustic environment is substantially different from the one for which the

default acoustic tuning file was defined, you may want to use another tuning file. In

this case, you must set the qcf key in the io-acoustic configuration file to the

path to your custom file. For example: qcf /etc/acoustic/mono.qcf, or qcf

/etc/acoustic/custom.qcf.

You may be required to sign additional royalty agreements if you plan to use

the full suite of QNX advanced acoustic processing features in your production

vehicles. Please contact your QNX representative for more information.

38 © 2014, QNX Software Systems Limited

Handsfree Telephony

Remote control server (RCS)

QNX handsfree telephony includes a remote control server (RCS) that gives access to

the QNX acoustic processing library over a network connection.

Overview

The QNX remote control server (RCS) allows you to use the QWALive tuning application

to connect to the acoustic processing library over a network connection. When you use

the RCS with QWALive you can:

• change switches to enable and disable features, or to adjust parameters in the

acoustic processing library

• stream library input and output audio to an external file

• use audio injection from external files to override library input and output audio

Enabling RCS

To enable RCS in the handsfree telephony module you need to make two changes to

the io-acoustic configuration file:

• Change the name of the handsfree module library to the name of the RCS-enabled

library. For example, change apm-aap-hf.so to apm-aap-rcs-hf.so.

• Explicitly enable RCS by adding the line rcsactive true to the module

configuration section in the configuration file.

The sample below shows the module section of the configuration file with the

parameters set to enable RCS access:

Single device input and output, RCS enabled

<hf apm-aap-rcs-hf.so>
 inputs 1
 ichannels1 2
 iroute1_1 IOAP_MIC_IN_1
 iroute1_2 IOAP_PHONE_IN_1
 outputs 1
 ochannels1 2
 oroute1_1 IOAP_PHONE_OUT_1
 oroute1_2 IOAP_SPKR_OUT_1
 qcf /etc/acoustic/mono.qcf
 msprime 30
 rcsactive true
</hf>

Tuning file load order

At startup, the handsfree module first sets up the acoustic library with built-in defaults.

It then uses information from tuning (.qcf) files (p. 38) to refine the acoustic

processing for the given platform and usage scenario. The choice of tuning file depends

on whether RCS is enabled.

© 2014, QNX Software Systems Limited 39

Remote control server (RCS)

http://www.qnx.com/download/feature.html?programid=20692

Normal (RCS not enabled)

If the RCS module isn't enabled, the handsfree module will tune the library in the

following order:

1. Load the built-in defaults and the tuning file at the path set by the qcf parameter

in the io-acoustic configuration file (acoustic.conf).

2. If loading the specified tuning file fails, load the built-in defaults only.

RCS enabled

If the RCS module is enabled and the qcf_rcs field is defined in the io-acoustic

configuration file, the handsfree module will tune the library in the following order:

1. Load the built-in defaults and the tuning file at the path set by the qcf_rcs

parameter in the io-acoustic configuration file (acoustic.conf).

2. If loading the tuning file specifed by the qcf_rcs parameter fails, proceed as for

a system without RCS enabled.

Changes to tuning parameters

Each time the handsfree module is started by a call to ioap_hf_go(), the module tunes

the acoustic processing library as defined above, unless QWALive is used to restart

the target or ioap_hf_config() has been called previously to change the qcf parameter.

Behavior when qcf_rcs is defined

When the qcf_rcs parameter is defined in the io-acoustic configuration file, if

the RCS client downloads new tuning parameters to the target (QWALive Push to

Target), this download overwrites the contents of the tuning file. All starts made

after the download, whether they are initiated through the Restart Target button

in QWALive or by a call to ioap_hf_go(), will use the tuning file load order for RCS

enabled.

Behavior when qcf_rcs is not defined

If the qcf_rcs parameter isn't defined in the io-acoustic configuration file, the

QWALive Push to Target function will overwrite the contents of the tuning file at

/tmp/hf_rcs_config.qcf. However, when the handsfree module is restarted, it

will always use the tuning file load order for a system that doesn't have RCS enabled.

This behavior allows you to save the tuning parameters to a file on the target for later

reference.

Behavior when the qcf parameter is changed

If the tuning file defined by the qcf parameter is changed with a call to

ioap_hf_config(), all starts after this change (initiated through the Restart Target

button in QWALive or by a call to ioap_hf_go()) will use the tuning file load order for

RCS not enabled.

40 © 2014, QNX Software Systems Limited

Handsfree Telephony

• To ensure that tuning is consistent across restarts, the handsfree module

remembers which method was used to make the most recent change to

tuning parameters (QWALive Push to Target or ioap_hf_config()).

• For more information about QWALive, please refer to your QNX Acoustic

Processing documentation.

© 2014, QNX Software Systems Limited 41

Remote control server (RCS)

Using the io-acoustic API

Projects that use their own Bluetooth service need to use the io-acoustic API to

manage acoustic echo cancellation and noise reduction.

If you use the io-acoustic API, you will have to perform the tasks described below.

Setting up

To enable acoustic echo cancellation on your system, you need to perform a few setup

tasks when you start your system:

1. Link to the libacoustic libraries.

2. Call ioap_hf_attach() to attach io-acoustic and get a handle to this resource

manager.

Configuration

If you want to use an acoustic tuning file for the AAP library other than the one

specified in the io-acoustic configuration file, you need to:

1. Call ioap_hf_config() to set the path to the AAP library tuning file. For more

information about acoustic tuning, see the AAP documentation.

If you want to change the device routing from that specified in the io-acoustic

configuration file:

1. Call ioap_hf_route() to set up the routing between the hardware devices and the

acoustic processing inputs and outputs.

Registering for events

When you have completed your initial setup, you need to:

1. Call ioap_hf_register_events() to register for io-acoustic events.

2. Start a thread to listen for events. In this thread, use the file descriptor returned

by ioap_hf_attach() to call select().

3. When select() returns, call ioap_hf_read_events() to process the events.

Starting

To start acoustic processing:

1. Call ioap_hf_prepare() to validate the acoustic processing paths set in the

configuration file or by the call to ioap_hf_route() during setup.

2. Call ioap_hf_go() to start the acoustic processing.

42 © 2014, QNX Software Systems Limited

Handsfree Telephony

Stopping

To stop acoustic processing, call ioap_hf_stop().

Troubleshooting

If you need to get information about your system and how it is configured for acoustic

processing you can:

• Call ioap_hf_setup() to retrieve the device routes defined in the configuration file

or set up by ioap_hf_route().

• Call ioap_hf_get_log_level() to get the current io-acoustic verbosity level.

• Call ioap_hf_set_log_level() to set the io-acoustic verbosity level.

Getting and setting the output volume level

Volume control is enabled if volumecontrol is set to “true” in the configuration file.

Otherwise, the volume level is fixed and specified by the tuning file.

This design supports systems that want the AAP library to control the volume, and

systems that want the codec to control the volume. The acoustic echo cancellation

performance will be better if the AAP library controls the volume, but this option is

more difficult to implement. It requires that your system intercept the volume control

change request and pass it into your handsfree application rather than just letting the

audio subsystem handle it.

If you configure your system to have the AAP library control the volume, you can use

the acoustic processing API to get and set the volume level. The volume level you set

with the API remains in force until the next time io-acoustic is started:

• Call ioap_hf_get_output_volume() to get the acoustic processing output volume.

• Call ioap_hf_set_output_volume() to set the acoustic processing output volume.

Estimating system latency

If you do not know your system's latency, you can use ioap_start_latency_test() to run

a latency test, and ioap_hf_get_latency_estimate() to retrieve the results of this test.

© 2014, QNX Software Systems Limited 43

Using the io-acoustic API

io-acoustic API

The QNX CAR platform includes APIs for working with io-acoustic to manage acoustic

processing for handsfree telephony.

This chapter describes the APIs available for managing acoustic processing for

handsfree devices in the QNX CAR platform. It describes functions, data structures,

type definitions, etc. used for working with io-acoustic. The header files for these APIs

are:

• <acoustic/acoustic.h>

• <acoustic/hf.h>

Only one service should ever use io-acoustic. Do not attempt to use

both io-bluetooth and your own Bluetooth service to control

io-acoustic. Attempting to do so will lead to unpredicable results.

IOAP_* type definitions

Handsfree telephony acoustic processing uses a number of pre-defined type definitions.

Limits

Type definitions used by acoustic processing include:

IOAP_MAX_DEVICES 4

Maximum number of devices.

IOAP_MAX_DEVICE_IO 4

Maximum number of device inputs or outputs.

IOAP_MAX_DEVICE_PATH 128

Maximum device path length.

Direction of acoustic processing

IOAP_OUTPUT 1u

Output direction.

IOAP_INPUT 2u

Input direction.

44 © 2014, QNX Software Systems Limited

Handsfree Telephony

Input and output channel routing masks

Routing masks are used to manage acoustic processing input and output channels.

IOAP_MIC_IN_1 0x00000001u

First microphone input channel.

IOAP_MIC_IN_2 0x00000002u

Second microphone input channel.

IOAP_REF_IN_1 0x00000010u

First reference input channel.

IOAP_PHONE_IN_1 0x00000100u

First phone input channel.

IOAP_SPKR_OUT_1 0x00001000u

First speaker output channel.

IOAP_PHONE_OUT_1 0x00010000u

First phone output channel.

Actions

IOAP_OFF 0

Disable.

IOAP_ON 1

Enable.

IOAP_NOCHANGE -1

Make no changes.

Logging verbosity levels

IOAP_LOG_SHUTDOWN 0

Shutdown (not used)

IOAP_LOG_CRITICAL 1

Critical (not used)

IOAP_LOG_ERROR 2

Error

© 2014, QNX Software Systems Limited 45

io-acoustic API

IOAP_LOG_WARNING 3

Warning

IOAP_LOG_NOTICE 4

Notice (not used)

IOAP_LOG_INFO 5

Information

IOAP_LOG_DEBUG1 6

Debug detail.

IOAP_LOG_DEBUG2 7

Debug fine detail.

IOAP_LOG_DEBUG3 8

Debug even finer detail.

IOAP_HF_EVENT_*

Handsfree telephony acoustic processing events.

Handsfree telephony acoustic processing delivers the following events:

IOAP_HF_EVENT_STARTED 0x0001

Acoustic processing has started.

IOAP_HF_EVENT_STOPPED 0x0002

Acoustic processing has stopped.

IOAP_HF_EVENT_PREPARED 0x0004

Preparation for acoustic processing is complete.

IOAP_HF_EVENT_ERROR 0x0008

Not currently used.

IOAP_HF_EVENT_RESTART 0x0010

Acoustic processing has restarted.

IOAP_HF_EVENT_FATAL_IO 0x0020

There has been a fatal (non-recoverable) i/o error.

IOAP_HF_EVENT_ALL -1

46 © 2014, QNX Software Systems Limited

Handsfree Telephony

Enable delivery of all events.

ioap_device_t

Set hardware device routing to acoustic processing input and output.

Synopsis:

#include <acoustic/acoustic.h>

typedef struct ioap_device {
 char path[IOAP_MAX_DEVICE_PATH];

 uint32_t nchannels;
 uint32_t route[IOAP_MAX_DEVICE_IO];
} ioap_device_t;

Library:

libacoustic

Description:

The structure defines a single hardware device, and the routing of a single hardware

device's inputs and outputs to the corresponding acoustic processing inputs and

outputs.

DescriptionTypeMember

The path to the device; null-terminated;

IOAP_MAX_DEVICE_PATH.

charpath

The number of populated routes in route; must be

1 or 2.

uint32_tnchannels

The routing for a device channel to the

corresponding acoustic processing input or output

uint32_troute

channel (one of IOAP_MIC_IN_1,

IOAP_MIC_IN_2, etc.). The number populated

is specified by nchannels; IOAP_MAX_DEVICE_IO

For more information about routing, see ioap_hf_route() (p. 66).

Classification:

QNX Neutrino

© 2014, QNX Software Systems Limited 47

io-acoustic API

ioap_event_t

Hold acoustic processing event information and data.

Synopsis:

#include <acoustic/acoustic.h>

typedef struct ioap_event {
 uint32_t length;
 uint32_t type;
 char data[];
} ioap_event_t;

Library:

libacoustic

Description:

The structure ioap_event_t is used to hold acoustic processing events. For more

information about handsfree events and how to get them, see:

• ioap_event_next() (p. 49)

• ioap_hf_read_events() (p. 63)

• ioap_hf_register_events() (p. 64)

• IOAP_HF_EVENT_* (p. 46)

DescriptionTypeMember

The event length, in bytes; includes both the

header and the data.

uint32_tlength

The event type. For more information, see software

(*_SW_EVENTS_*) and handsfree

(IOAP_HF_EVENTS_*) events.

uint32_ttype

Event data; optional.chardata[]

Classification:

QNX Neutrino

48 © 2014, QNX Software Systems Limited

Handsfree Telephony

ioap_event_next()

Return the location of the next unread acoustic processing event.

Synopsis:

#include <acoustic/acoustic.h>

int ioap_event_next(_evt)
 (ioap_event_t*)IOAP_ROUNDUP8((char*)_evt + _evt->length)
;

Arguments:

_evt

Pointer to the next event to read.

Library:

libacoustic

Description:

The ioap_event_next() function returns a pointer to the location of the next unread

acoustic processing event. Use this function to retrieve the next event in the event

buffer returned by ioap_hf_read_events().

Returns:

>0

Success: a pointer to next valid event.

NULL

There are no more acoustic processing events to be read.

Errors:

n/a

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

© 2014, QNX Software Systems Limited 49

io-acoustic API

Safety:

NoSignal handler

YesThread

ioap_hf_attach()

Open a connection to the io-acoustic handsfree module.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_attach(const char* path_mgr);

Arguments:

path_mgr

Path to the instance of io-acoustic to which to attach. NULL defaults to

the standard location for io-acoustic. Pass NULL unless io-acoustic

isn't installed in its default location, or there are multiple instances of

io-acoustic available.

Library:

libacoustic

Description:

The ioap_hf_attach() function attaches an instance of io-acoustic for use with

handsfree acoustic processing.

Returns:

>0

Success: a handle for the attached io-acoustic.

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid argument.

50 © 2014, QNX Software Systems Limited

Handsfree Telephony

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_config()

Set the next tuning file to use for initializing handsfree processing.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_config(int adp,
 const char* filename);

Arguments:

apd

The handle returned by ioap_hf_attach() when it attaches to a process to

io-acoustic.

filename

Path to the next acoustic processing tuning file to use.

Library:

libacoustic

Description:

The ioap_hf_config() function sets the next tuning file to use for initializing handsfree

processing.

Returns:

0

Success

-1

© 2014, QNX Software Systems Limited 51

io-acoustic API

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument. If there is an issue loading the

tuning file, an error is sent through notification events.

ENOMEM

Could not allocate memory to backup tuning file name.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_get_latency_estimate()

Get the latency estimate from a latency test.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_get_latency_estimate(
 int apd,
 ioap_hf_latency_estimate_t* estimate);

Arguments:

apd

The handle to io-acoustic.

estimate

Pointer to the structure with the results of the latency test.

Library:

libacoustic

52 © 2014, QNX Software Systems Limited

Handsfree Telephony

Description:

The ioap_hf_get_latency_estimate() function retrieves the results of latency tests

started by ioap_hf_start_latency_test() and placed in the

ioap_hf_latency_estimate_t data structure.

A latency test determines the latency for each of nine clicks that are played back. The

two smallest and two largest latency values are discarded. The remaining five latency

values are used to calculate the three values returned by the test:

• latency estimate

• latency spread

• cross-correlation

A successful latency test should return a latency-spread of < 4 milliseconds and a

cross-correlation of > 500. If the latency spread is greater than 4 milliseconds or the

cross-correlation is less than 500, the signal to noise ratio of the clicks should be

increased, for example by increasing the playback volume or decreasing the ambient

noise level. If the latency is > 100 milliseconds, you should increase the offset specified

when starting the test in order to move the estimate calculation into the correct

measurement window.

The msrefdelta_default key in the .conf configuration file should be set to the

difference between the msprime and the returned latency estimate. See “Configuration

keys (p. 32)”.

Returns:

0

Success

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument.

EACCESS

Acoustic processing hasn't been started.

EAGAIN

Test result isn't ready yet.

EFAULT

© 2014, QNX Software Systems Limited 53

io-acoustic API

An error occurred while retrieving the estimate.

ENOTSUP

Diagnostics processing hasn't been enabled.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_get_log_level()

Get the verbosity level for the handsfree acoustic processing logs.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_get_log_level(int apd, int* level);

Arguments:

apd

The handle to io-acoustic.

level

Pointer to the location where the log level is stored.

Library:

libacoustic

Description:

The ioap_hf_get_log_level() function retrieves the current verbosity of the handsfree

acoustic processing logs.

The default verbosity is IOAP_LOG_ERROR. The log verbosity can be changed by

calling ioap_hf_set_log_level(), editing the configuration file, or by using the -v option

when starting io-acoustic.

54 © 2014, QNX Software Systems Limited

Handsfree Telephony

Returns:

0

Success

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument .

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_get_output_volume()

Get the output volume.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_get_output_volume(int apd, int32_t* volume);

Arguments:

apd

The handle to io-acoustic.

volume

Pointer to the handsfree acoustic processing volume.

© 2014, QNX Software Systems Limited 55

io-acoustic API

Library:

libacoustic

Description:

The ioap_hf_get_output_volume() function retrieves the handsfree acoustic processing

volume.

If your system is configured to allow the volume to be set through the API

(volumecontrol is set to true in the configuration file (p. 32)), you can set the volume

by calling ioap_hf_set_output_volume(). The valid range is from 0 (minimum) to 100

(maximum).

Returns:

0

Success: the volume setting.

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_go()

Start handsfree acoustic processing.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_go (int apd) ;

56 © 2014, QNX Software Systems Limited

Handsfree Telephony

Arguments:

apd

The handle to io-acoustic.

Library:

libacoustic

Description:

The ioap_hf_go() function starts handsfree acoustic processing, initiating the start of

audio transfer. It can only be used after acoustic processing has been prepared by

calling ioap_hf_prepare().

When it starts, ioap_hf_go() delivers the acoustic processing event

IOAP_HF_EVENT_STARTED.

If acoustic processing is already running, calling this function has no effect.

Returns:

0

Success

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument.

ENOTSUP

The priming interval was too short to be able to start acoustic processing.

EACCES

Acoustic processing is stopped, or has not been prepared.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

© 2014, QNX Software Systems Limited 57

io-acoustic API

Safety:

NoSignal handler

YesThread

ioap_hf_latency_estimate_t

Hold data returned by a latency test.

Synopsis:

#include <acoustic/hf.h>

typedef struct ioap_hf_latency_estimate {
 int32_t mslatency;
 int32_t msspread;
 int32_t crosscorr;
} ioap_hf_latency_estimate_t;

Library:

libacoustic

Description:

The structure ioap_hf_latency_estimate_t is used to hold latency estimates

gathered by ioap_hf_start_latency_test() and made available by

ioap_hf_get_latency_estimate().

DescriptionTypeMember

The latency estimate, in milliseconds, calculated

as the average of five separate latency

measurements.

int32_tmslatency

The spread of latency measurements; that is, the

spread from the minimum latency and the

int32_tmsspread

maximum latency recorded during five separate

measurements.

The cross-correlation estimate between output and

input signals. A value of 0 means no correlation

int_32crosscorr[]

was found; a value greater than 500 means a good

correlation was found.

Classification:

QNX Neutrino

58 © 2014, QNX Software Systems Limited

Handsfree Telephony

ioap_hf_latency_test_t

Configuration data to set up a latency test.

Synopsis:

#include <acoustic/hf.h>

typedef struct ioap_hf_latency_test {
 uint32_t msoffset;
 uint32_t channel;
} ioap_hf_latency_test_t;

Library:

libacoustic

Description:

The structure holds information to set up a latency test performed by

ioap_hf_start_latency_test().

DescriptionTypeMember

The number of milliseconds to wait after each click

before starting data collection for the latency

uint32_tmsoffset

measurements, performed during the next 100 ms,

approximately. This offset is used to accommodate

systems with longer (>100 ms) latencies.

The microphone or reference input channel to use

for the latency determination (IOAP_MIC_IN_1,

IOAP_MIC_IN_2, etc.).

uint32_tchannel

Classification:

QNX Neutrino

ioap_hf_mute()

Set or get the acoustic processing input or output mute status.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_mute(int adp, uint32_t direction, int32_t*
muteaction);

© 2014, QNX Software Systems Limited 59

io-acoustic API

Arguments:

apd

The handle to io-acoustic.

direction

The direction of the acoustic processing, either IOAP_INPUT or

IOAP_OUTPUT.

muteaction

A pointer to value specifying the mute action to perform. This action can be

one of:

• IOAP_ON

• IOAP_OFF

• IOAP_NOCHANGE (Only retrieve the mute state.)

Library:

libacoustic

Description:

The ioap_hf_mute() function sets and gets the mute state for acoustic processing input

and output.

Applying hardware mutes when you are using acoustic processing is not advised since

the hardware will mute the microphone audio before it is input to the acoustic

processing library. With no input coming from the microphone, the noise and signal

estimates that the acoustic processing maintains will decay down to zero. When the

mute is later released, acoustic processing requires time to rebuild these statistics,

which it requires for correct operation in the current acoustic environment.

When you use the acoustic processing library to apply mutes, if acoustic processing

isn't active, the mute action has no effect. However, the new setting is maintained

until the next time that acoustic processing is started, and applied at that time.

Returns:

>0

Success

-1

An error occurred (errno is set).

60 © 2014, QNX Software Systems Limited

Handsfree Telephony

Errors:

EINVAL

Invalid handle, direction, or null pointer argument.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_prepare()

Prepare the system for acoustic processing.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_prepare(int apd) ;

Arguments:

apd

The handle to io-acoustic.

Library:

libacoustic

Description:

The ioap_hf_prepare() function prepares the system for acoustic processing. You must

call this function before you call io_hf_go() to start acoustic processing, including

acoustic echo cancellation. It can only be called when acoustic processing is stopped.

This function:

1. Validates the acoustic processing routing against the current configuration specified

by ioap_hf_route() and ensures that there are no inconsistencies.

2. Allocates the memory needed for audio transfer.

© 2014, QNX Software Systems Limited 61

io-acoustic API

3. Opens the audio devices in START_ON_GO mode. Audio transfer isn't started until

ioap_hf_go() is called.

When ioap_hf_prepare() finishes preparing the system, it delivers the acoustic

processing event IOAP_HF_EVENT_PREPARED.

Returns:

0

Success

-1

An error occurred (errno is set).

Errors:

EACCES

Acoustic processing is not stopped.

EINVAL

Invalid handle or null pointer argument.

EIO

Setup error with input or output.

ENODEV

No memory available for data structures.

ENOMEM

No memory available for data structures.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

62 © 2014, QNX Software Systems Limited

Handsfree Telephony

ioap_hf_read_events()

Read handsfree acoustic processing events.

Synopsis:

#include <acoustic/hf.h>

ssize_t ioap_hf_read_events(int apd,
 void *buf,
 size_t buf_len);

Arguments:

apd

The handle to io-acoustic.

buf

Pointer to the buffer with the events.

buf_len

Length of the event buffer, in bytes.

Library:

libacoustic

Description:

The ioap_hf_read_events() function reads handsfree acoustic processing events. Before

calling this function, you must register for events and intialize the queue by calling

ioap_hf_register_events().

Each event consists of an ioap_event_t data structure. This structure may be

followed by additional data, then by a variable number of padding bytes to ensure

8-byte alignment. Declaring your event buffer type double will ensure that it is 8-bit

aligned.

The ioap_hf_read_events() function never returns partial events; it returns only the

events that can fit into the length of the buffer that is provided. If the first event does

not fit into this buffer, the function returns an error and sets E2BIG.

If the event buffer holds more that one event, you should use ioap_event_next() to

extract the next event, based on the previous event's address and contents.

See IOAP_HF_EVENT_* for information about the individual handsfree acoustic

processing events.

© 2014, QNX Software Systems Limited 63

io-acoustic API

The io-acoustic service won't hold an unlimited number of events. If it

reaches its limit, it discards all new events until its events are read and its

queue cleared.

Returns:

 0

Success: the number of events read.

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument.

E2BIG

The buffer is too small for the event data.

EIO

The event queue has not been intitialized. Call ioap_hf_register_events() to

initialize the queue.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_register_events()

Register to receive handsfree acoustic processing events.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_register_events(int apd, int events) ;

64 © 2014, QNX Software Systems Limited

Handsfree Telephony

Arguments:

apd

The handle to io-acoustic.

events

Reserved. Set to IOAP_HF_EVENT_ALL.

Library:

libacoustic

Description:

The ioap_hf_register_events() function registers your process to receive handsfree

events. After you have registered to receive events, you can call ioap_hf_read_events()

to get events.

Returns:

>0

Success: ID of the opened device.

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument.

ENOMEM

No memory available for data structures.

EBUSY

ioap_hf_register_events() is being called twice.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

© 2014, QNX Software Systems Limited 65

io-acoustic API

Safety:

NoSignal handler

YesThread

ioap_hf_route()

Set the routing between the hardware and the acoustic processing inputs and outputs.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_route(int apd,
ioap_io_map_t* map);

Arguments:

apd

The handle to io-acoustic.

map

Pointer to an ioap_map_io_t structure specifying the new routing.

Library:

libacoustic

Description:

The ioap_hf_route() function modifies the audio routing between the hardware and

the acoustic processing inputs and outputs.

If the call to ioap_hf_route() fails, the routing is unchanged. If the call is successful,

the system maintains the routing even after ioap_hf_stop() has been called; that is,

the new routing will be kept until the next call to ioap_hf_route(), or a system restart.

Routing is defined in the structure ioap_map_io_t, and must respect the following

rules:

• The number of devices must be greater than zero (0).

• For any device, routed channels must be either all input or all output.

• Channels used must be contiguous; you may not use channel 2 if you haven't used

channel 1.

• Routes must be contiguous; you may not specify IOAP_SPKR_OUT_2 if you haven't

also specified IOAP_SPKR_OUT_1.

66 © 2014, QNX Software Systems Limited

Handsfree Telephony

• Duplicate inputs or outputs aren't allowed.

For more information about the default routing, see Configuring io-acoustic. For

information about the current routing configuration, call ioap_hf_setup().

Returns:

0

Success

-1

An error occurred (errno is set).

Errors:

E2BIG

Too many input or output groups were specified, or there are too many

channels in a hardware group.

EACCESS

Attempt to modify routing while data is being processed.

EINVAL

Invalid handle or null pointer argument.

EIO

The channel mapping is not contiguous, or a required channel is missing.

ENOMEM

No memory available for data structures.

EINOTSUP

Invalid I/O type.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 67

io-acoustic API

ioap_hf_set_log_level()

Set the verbosity level for the handsfree acoustic processing logs.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_set_log_level(int apd, int* level) ;

Arguments:

apd

The handle to io-acoustic.

level

Pointer to the location where the log level is stored.

Library:

libacoustic

Description:

The ioap_hf_set_log_level() function sets the verbosity of the acoustic echo cancellation

logs.

The default verbosity is IOAP_LOG_ERROR. You can change this verbosity by editing

the configuration file, by using the -v option when starting io-acoustic, or by

calling ioap_hf_set_log_level().

You can check the current verbsoity level by calling ioap_hf_get_log_level().

Returns:

0

Success

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument .

68 © 2014, QNX Software Systems Limited

Handsfree Telephony

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_set_output_volume()

Set the output volume.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_set_output_volume(int apd,
 int32_t* volume);

Arguments:

apd

The handle to io-acoustic.

volume

Pointer to the acoustic processing volume.

Library:

libacoustic

Description:

The ioap_hf_set output_volume() sets the handsfree acoustic processing volume. The

valid range is 0 (minumum) to 100 (maximum). Values outside this range are clamped;

for example, if you try to set the volume to 120, the system will set it at 100.

If acoustic processing is active, the volume change takes effect immediately. If acoustic

processing isn't active, the change takes effect the next time acoustic processing is

started.

To retrieve the volume setting, call ioap_hf_get_output_volume().

© 2014, QNX Software Systems Limited 69

io-acoustic API

To use this function, acoustic processing on your system must be configured

to allow the volume to be set through the API (volumecontrol is set to true

in the configuration file (p. 32)).

Returns:

0

Success: the volume setting.

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument.

EIO

Acoustic processing is configured for fixed volume control, so the volume

can't be set through the API.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_setup()

Retrieve the current routing configuration.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_setup(int apd, int events) ;

Arguments:

70 © 2014, QNX Software Systems Limited

Handsfree Telephony

apd

The handle to io-acoustic.

setup

Pointer to an ioap_hf_setup_t structure to load with with the current

acoustic processing configuration.

Library:

libacoustic

Description:

The ioap_hf_setup() function retrieves the acoustic processing routing configuration.

Returns:

0

Success

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

© 2014, QNX Software Systems Limited 71

io-acoustic API

ioap_hf_setup_t

Define handsfree module routing setup.

Synopsis:

#include <acoustic/hf.h>

typedef struct ioap_hf_setup {
 ioap_io_map_t mapin;
 ioap_io_map_t mapout;
} ioap_hf_setup_t;

Library:

libacoustic

Description:

The structure contains maps to define the handsfree module's routing. For more

information, see ioap_hf_setup().

DescriptionTypeMember

Map for the input device.ioap_io_map_tmapin

Map for the output device.ioap_io_map_tmapout

Classification:

QNX Neutrino

ioap_hf_start_latency_test()

Start a latency test.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_start_latency_test(int apd, const
ioap_hf_latency_test_t* test) ;

Arguments:

apd

The handle returned by ioap_hf_attach() when it attaches to a process to

io-acoustic.

72 © 2014, QNX Software Systems Limited

Handsfree Telephony

test

Pointer to the latency test configuration structure.

Library:

libacoustic

Description:

The ioap_hf_start_latency_test() function starts a latency test. A latency test injects

a series of nine clicks into the receive output and gathers statistics from the signal

captured on the specified output.

To retrieve the results of a latency test, call ioap_hf_get_latency_estimate() and look

at the values in the ioap_hf_latency_estimate_t data structure.

The results of a latency test can be used to configure the time (in milliseconds) to

prime speaker or phone output on “go” in order to compensate for system latency.

This time period is platform specific, and should be adjusted to the shortest time

possible (that is, the shortest time period that is sufficient to prevent underruns).

A latency test determines the latency for each of nine clicks that are played back. The

two smallest and two largest latency values are discarded. The remaining five latency

values are used to calculate the three values returned by the test:

• latency estimate

• latency spread

• cross-correlation

A successful latency test should return a latency-spread of < 4 milliseconds and a

cross-correlation of > 500. If the latency-spread is greater than 4 milliseconds or the

cross-correlation is less than 500, the signal-to-noise ratio of the clicks should be

increased, for example by increasing the playback volume or decreasing the ambient

noise level. If the system latency is > 100 milliseconds, you should increase the offset

specified when starting the test in order to move the estimate calculation into the

correct measurement window.

The msrefdelta_default key in the .conf configuration file should be set to the

difference between the msprime and the returned latency estimate. See “Configuration

keys (p. 32)”.

Returns:

0

Success

-1

© 2014, QNX Software Systems Limited 73

io-acoustic API

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle, null pointer argument or test argument.

EACCESS

Acoustic processing hasn't been started.

EBUSY

Test already in progress.

EFAULT

An error occurred during the test.

ENOTSUP

Diagnostics processing hasn't been enabled.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_hf_stop()

Stop acoustic processing.

Synopsis:

#include <acoustic/hf.h>

int ioap_hf_stop(int apd, int events) ;

Arguments:

apd

The handle to io-acoustic.

74 © 2014, QNX Software Systems Limited

Handsfree Telephony

Library:

libacoustic

Description:

The ioap_hf_stop() function stops acoustic processing and delivers the event

IOAP_HF_EVENT_STOPPED when it has completed.

Calling ioap_hf_stop() when acoustic processing is not running will have no effect.

Returns:

>0

Success

-1

An error occurred (errno is set).

Errors:

EINVAL

Invalid handle or null pointer argument.

Classification:

QNX Neutrino

Safety:

NoInterrupt handler

NoSignal handler

YesThread

ioap_io_map_t

Define handsfree module routing setup.

Synopsis:

#include <acoustic/acoustic.h>

typedef struct ioap_io_map {
 ioap_io_map_t mapin;
 ioap_io_map_t mapout;
 } ioap_io_map_t;

© 2014, QNX Software Systems Limited 75

io-acoustic API

Library:

libacoustic

Description:

The ioap_io_map_t structure specifies a list of hardware devices and the mapping

of their inputs or outputs to the corresponding acoustic processing inputs or outputs.

For more information about routing, see ioap_hf_route().

DescriptionTypeMember

Direction, either input (IOAP_INPUT)

or output (IOAP_OUTPUT).

uint32_tdirection

The number of populated devices in

devicelist.

uint32_tndevices

Array of devices. The number of

populated devices, is specified by

ioap_device_tdevicelist

[IOAP_MAX_DEVICES]
ndevices. See ioap_hf_route() for

routing rules.

Classification:

QNX Neutrino

76 © 2014, QNX Software Systems Limited

Handsfree Telephony

Chapter 6
Image Generation

The QNX CAR platform includes tools to assist you with building images for your target.

The tools included with the QNX CAR platform are in addition to the utilities available

with the QNX Neutrino RTOS SDP. For information about the SDP utilities, see the

QNX SPD Utilities Reference.

For information about building images, see:

• Building and Customizing Target Images in the QNX CAR documentation.

• Building Embedded Systems in the QNX SPD documentation.

• The BSP User Guide for your board.

© 2014, QNX Software Systems Limited 77

gen-ifs

Perform setup activities and then run mkifs to include IFS files in an image.

Syntax:

 gen-ifs [-o] output [options]

Options:

-c, --config

Read the specified IFS configuration file.

-d, --default-ifs

Specify which IFS file is the default IFS (qnx-ifs).

--defaults

Include default directories in the search path.

-f, --input

Include the specified input file.

-N--no-defaults

Don't include default directories in the search path.

-o, --output

Write to the specified IFS file.

--output-path

Write IFS(s) to the specified location.

-r, --root

Include the specified directory as a root directory.

-v, --verbose

Increase verbosity.

Description:

The gen-ifs utility sets up the MKIFS_PATH for the specified board type, locates

and concatenates the specified buildfiles, and then runs mkifs to include the .ifs

files in an image.

78 © 2014, QNX Software Systems Limited

Image Generation

The gen-ifs utility calls the mkifs utility to create the .ifs file(s) that are included

in the final target image. An IFS is a bootable image filesystem that contains the

procnto module, your boot script, and possibly other components such as drivers

and shared objects.

If you generate only a single .ifs file, then you need to specify just the -o

and -f options. However, if you want to generate multiple .ifs files, then

you must specify at least the -c, -d, and --output-path options.

The following example uses the omap5uevm platform and creates an ifs file. The

information in the resulting file is used by the image-generation script mksysimage.py

(p. 84).

Examples:

The following example creates a single ifs file as output:

%QNX_CAR_DEPLOYMENT%/deployment/scripts/gen-ifs -o omap5uevm.external

Exit status:

0

The setup activities and inclusion of the IFS image files completed

successfully.

>0

An error occurred.

Caveats:

None.

© 2014, QNX Software Systems Limited 79

gen-ifs

gen-osversion

Generate the /etc/os.version file based on build environments.

Syntax:

 gen-osversion [options] ... <platform>.<variant>

Options:

-q, --quiet

Prevent output.

-p, --additionalParameters

Include additional parameters <parameter>=<value>.

-v, --verbose

Increase verbosity.

Description:

You can use the gen-osversion utility on its own or as part of the mksysimage.py

utility script to generate the os.version file based on build environments.

To run gen-osversion, you need to specify the platform and its variant.

Examples:

The following example uses the omap5uevm platform and creates an os.version

file. The information in the resulting file is used by the image-generation script

mksysimage.py.

%QNX_CAR_DEPLOYMENT%/deployment/scripts/gen-osversion omap5uevm.external

The resulting output might look something like this:

date: Thu Aug 30 13:23:48 2013
project: Local Build
buildHost: ubuntu
buildID: Local Build
buildNum: Local Build

platform: omap5uevm.external
MyBranch: trunk
MyRev: 6998
externalBranch: main
externalRev: 2732

Exit status:

80 © 2014, QNX Software Systems Limited

Image Generation

0

The OS version file was generated successfully.

>0

An error occurred.

Caveats:

None.

© 2014, QNX Software Systems Limited 81

gen-osversion

mkimage.py

Generate an image from existing .tar files.

Syntax:

 mkimage [-o] outputpath ... [options]

Options:

-c, --config

Use the specified configuration file. See “Configuration file for mkimage.py”

in the Building and Customizing Target Images guide.

-o, --output

Write to the specified image file.

-t, --tar_path

Specify the path to the .tar files.

--tars

Specify a list of .tar files.

-v, --verbose

Specify the verbosity up to a maximum of 4.

Description:

The mkimage.py script creates an image from the .tar files generated by mktar.

This script extracts from the .tar file, creates the buildfiles, creates temporary

.image files for each partition, and then creates the diskimage config file to create

the final disk image. The bootable image file(s) (.image) are placed in the specified

output file, followed by the embedded filesystem files (or any other type of image).

With the exception of bootable images, all image files are padded up to the block size

specified on the command line. If you don't specify a blocksize, the default is 64K.

Examples:

To run mkimage.py, you must specify the -o option and run the script from the

location where the .tar files are located.

The following example shows have to generate an image:

%QNX_TARGET%/scripts/mkimage.py -o /tmp/

82 © 2014, QNX Software Systems Limited

Image Generation

Exit status:

0

An image file was generated successfully.

>0

An error occurred.

Caveats:

None.

© 2014, QNX Software Systems Limited 83

mkimage.py

mksysimage.py

Create a QNX CAR image and generate other supporting files, such as .ifs and .tar.

Syntax:

 mksysimage [-o output] [options]... [board_name.external]

Options:

-c, --mksysimage-config-file

Specify the configuration file used for the mksysimage.py utility.

-f, --force

Force the overwriting of existing tar files.

-g, --osversion-content

Specify any additional content for the os.version file.

-G, --no-gen, --no-generation

Run only mktar and imaging components.

--gen-ifs-options

Specify the options for gen-ifs.py (see gen-ifs.py --help).

--image-config-path

Specify the path of the configuration files for the mkimage utility.

-k, --mkimage-options

Specify the options for mkimage.py options (see mkimage.py --help).

-m, --mktar-options

Specify the options for mktar.py (see mktar.py --help).

--no-gen-ifs

Don't generate IFS files.

--no-mkimage

Don't generate the mkimage part of the process.

--no-mktar

84 © 2014, QNX Software Systems Limited

Image Generation

Don't generate the mktar part of the process.

--no-gen-osversion

Don't generate an os.version.

-o, --output-path

Write image and tar files to the specified path. If a -t option is specified,

tar files are written to the path specified.

-q, --quiet

Prevent any output.

-t, --tar-file-path

Read and write tar files to and from the specified path.

-v, --verbose

Increase the verbosity.

If you specify both the -p and -m options, any intermediate directories you have

created have mode u+wx.

Description:

The mksysimage.py utility is a Python script that invokes other utilities to generate

tar files and images for each platform. By default, mksysimage.py reads a

configuration file from

%QNX_TARGET%/<platform>/sd-boot/config/<platform>-mksysimage.cfg.

This configuration file defines the .tar files and images created during the

image-generation process. The image variants for each platform are defined within

the configuration file. By default, for each image variant, mksysimage.py generates

two tar files and one image. The tar file <platform>-os.tar contains two QNX CAR2

filesystems that include all files except MLO and IFS files. The tar file

<platform>-dos-<image_variant> contains a FAT16 filesystem that includes all bootup

files, such as MLO and IFS files. The final generated image includes these two tar

files.

You can change the default configuration file associated with mksysimage.py (where

the default file is located at

%QNX_CAR_DEPLOYMENT%/<platform>/sd-boot/config/platform-mksysimage.cgf),

or specify your own by using the -c option in mksysimage.py. Setting this option

will enable you to further customize your tar files and images. For more information

about changing the configuration file for mksysimage.py, see “Configuration file

for mksysimage.py” in Building and Customizing Target Images. For information

about calculating the size of images and partitions, see “Calculate the size of an

© 2014, QNX Software Systems Limited 85

mksysimage.py

image/partition” in in Building and Customizing Target Images. If you want

mksysimage.py to generate only certain file types, use the following options:

Use the following options on the command line for mksysimage.py:To generate

only:

mksysimage -o outputpath <board>.external --no-mkimage --no-mktar --no-

gen-osversion

IFS files

mksysimage -o outputpath <board>.external --no-mktarTAR files

mksysimage -o outputpath <board>.external --no-gen-ifs --no-gen-mktar

--nogen-osversion

mkimage

Examples:

To run mksysimage.py, you need to specify the platform, its variant, and the output

path.

The following example reads the default configuration file for the omap5uevm platform

and creates three images and their corresponding tar files in the specified output

path called /tmp.
%QNX_TARGET%/scripts/mksysimage.py -o /tmp/ omap5uevm.external

Exit status:

0

The specified image file was created successfully.

>0

An error occurred.

Caveats:

None.

86 © 2014, QNX Software Systems Limited

Image Generation

mktar

Create a tar file containing a filesystem for a specified board variant

Syntax:

 mktar [-o output] [options] ... [board_name_argument]

Options:

--bars

Include new-style (BAR) applications (implies --no-defaults)

--compress

Use the given compression method: auto (default), none, gzip, or

bzip2.

--cpu

Set the system architecture (e.g., \"armle-v7\").

-f, --fileset

Include the specified fileset.

--help

Display a help message showing mktar usage information.

--no-defaults

Don't include the board's default filesets/applications.

-o output

Write to the specified output file.

-p, --package

Include the given package (implies --no-defaults).

--prefix

Prefix each path with the given string.

--profile

Specify the profile xml file (default: \"profile.xml\").

-s, --symbols

© 2014, QNX Software Systems Limited 87

mktar

Search in the runtime-symbols/ folder for the unstripped binaries.

-v, --verbose

Increase verbosity.

-z

Compress with gzip.

If you specify both the -p and -m options, any intermediate directories you have

created have mode u+wx.

Description:

The mktar utility creates a tar file containing the filesets listed in the board-specific

profile, resulting in proper ownership and permissions. Don't use mktar on its own

to create a tar file. Instead, use the mksysimage.py Python script, with the --no-

mkimage option to create .tar files and no image.

If you use mktar without specifying the profile option --profile, then by

default, the mktar utility will use the file profile.xml located in

/boards/board.external.

The mktar utility creates a tar file containing the filesystem for a specified variant,

typically used by mksysimage.py to include in the resulting image that's generated.

It currently requires binary content from your installed software as well as source and

deployment files.

Before you can use this utility, you must have the following prerequisites:

• Linux — Ubuntu Host or VM from http://www.ubuntu.com/download

• QNX CAR Platform for Infotainment 2.1 host development environment from

http://www.qnx.com/download

• Java v1.6.0_35 — use sudo apt-get install openjdk-6-jre

• SVN external repository

• Hardware-specific firmware — mktar will return the following warning if the

firmware files are not present for imx61sabre:

skipped missing item: lib/firmware/vpu/vpu_fw_imx6q.bin

The mktar uses Python's tarfile module to generate a tar file with the appropriate

permissions. The list of included files is determined by a board profile, which is stored

as profile.xml in the board directory (e.g.,

%QNX_CAR_DEPLOYMENT%/boards/omap5uevm.car2/profile.xml). For more

information and for details about dependencies, see the file located at

%QNX_TARGET%/pymodules/qnxcar/config.py.

88 © 2014, QNX Software Systems Limited

Image Generation

http://www.ubuntu.com/download
http://www.qnx.com/download

You can overwrite the default profile by using the --profile option.

The mktar utility with the -vvv option will show the search path used to find files.

The typical search path (implemented in

deployment/pymodules/qnxcar/path.py:get_stage_locator) is as follows:

• %QNX_CAR_DEPLOYMENT%/boards/boardname.variant/cpudir/

• %QNX_CAR_DEPLOYMENT%/boards/boardname.variant/cpudir/

• %QNX_CAR_DEPLOYMENT%/boards/boardname.variant/

• %QNX_CAR_DEPLOYMENT%/boards/boardname/cpudir/

• %QNX_CAR_DEPLOYMENT%/boards/boardname/

• %QNX_CAR_DEPLOYMENT%/cpudir/

• %QNX_CAR_DEPLOYMENT%/

• %QNX_CAR_DEPLOYMENT%/runtime-external/cpudir/

• %QNX_CAR_DEPLOYMENT%/runtime-external/

• %QNX_TARGET%/cpudir/

• %QNX_TARGET%/

Overriding files to create custom mktar images

The mktar utility will search the search paths identified above to find all files defined

in a particular board's profile.xml file. To include a new version of any file (e.g.,

a driver, configuration file, etc.), you would copy the file into the appropriate search

path, and then rerun mktar.

To choose the appropriate search path, you need to determine the following:

• Does this change affect all boards? If the answer is yes, put the file in

%QNX_CAR_DEPLOYMENT%/cpudir/ or car2-target/.

• Does this change affect only a specific board(s)? If the answer is yes, put the file

in %QNX_CAR_DEPLOYMENT%/boards/boardname/cpudir/ or

%QNX_CAR_DEPLOYMENT%/boards/boardname/ for all affected boards.

• Does this change affect only a specific variant of a given board(s)? If the answer

is yes, put the file in

%QNX_CAR_DEPLOYMENT%/boards/boardname.variant/cpudir/ or

%QNX_CAR_DEPLOYMENT%/boards/boardname.variant/ for all affected

board/variants. For example, if you wanted to swap in an updated devi-hid driver

that applies to all armle-v7-based boards you're working with, you'd copy it to

%QNX_CAR_DEPLOYMENT%/armle-v7/usr/bin/devi-hid. However, if you

had a new audio driver for some target board (target_name) you would include the

file in %QNX_CAR_DEPLOYMENT%/boards/target_name

/armle-v7/lib/dll/deva-ctrl-omap4pdm.so.

If you're attempting to update, for example,

%QNX_CAR_DEPLOYMENT%/armle-v7/usr/bin/devi-hid, but the

© 2014, QNX Software Systems Limited 89

mktar

same file is currently overridden for the board you're interested in (e.g.

%QNX_CAR_DEPLOYMENT%/boards/target_name

/armle-v7/usr/bin/devi-hid), you'd have to remove the overridden

file for your new copy in

%QNX_CAR_DEPLOYMENT%/armle-v7/usr/bin/devi-hid to be picked

up. This is because the utility searches the paths in a certain order for any

given file defined in profile.xml.

Examples:

To create a tar file for OMAP5432:

%QNX_TARGET%/scripts/mktar -o omap5uevm_external.tar
 omap5uevm.external

This command creates a file named omap5uevm_external.tar that contains the

QNX CAR filesystem for the OMAP5432 board.

To create a tar file for SABRE Lite:

%QNX_TARGET%/scripts/mktar -o imx61sabre_external.tar
 imx61sabre.external

This command creates a file named imx61sabre_external.tar that contains the

QNX CAR filesystem for SABRE Lite. To list all available platform.variant pairs, you

can run:

ls -d %QNX_CAR_DEPLOYMENT%/boards/*.*

The output is compressed if the filename in the mktar command ends with .gz or

.bz2. The utility can also be used without a board configuration, by manually specifying

filesets (and a CPU type if applicable). You can also add extra filesets to a board's

default configuration.

Exit status:

0

A tar file was generated successfully.

>0

An error occurred.

Caveats:

None.

90 © 2014, QNX Software Systems Limited

Image Generation

Chapter 7
Keyboard

The keyboard service works with the keyboard provided by the HMI to display and

manage the on-screen keyboard, or with a physical keyboard to enable input from that

keyboard.

Overview

The keyboard service (keyboard-imf (p. 93)) lets applications communicate with

the on-screen keyboard through PPS objects. It allows them to:

• show and hide the keyboard

• know the keyboard height, in pixels, so they can, if necessary, adjust their displays

to fit into the remaining available screen area

• accept text entries and know how many characters have been entered

Interaction of HMI, keyboards, and applications

The diagram below shows how keyboard-imf interacts with the HMI virtual

keyboards:

• The HMI virtual keyboards (HTML inside the Navigator, or Qt standalone) create

the /pps/system/keyboard/control and /pps/system/keyboard/status

PPS objects, and publish their activities to them.

• The keyboard-imf service subscribes to these objects to be able to receive

information from the HMI.

• The keyboard-imf service creates the /pps/services/input/control/

PPS object, to which it publishes information received from the HMI and the

applications. This object is for internal communication between keyboard-imf

and the HMI; other components and applications don't need to publish or subscribe

to this object.

• Applications, such as Weblauncher and QT runtime, subscribe to

/pps/services/input/control/ to learn about keyboard presence, height,

etc., and publish information such as the user input and the number of characters

entered.

© 2014, QNX Software Systems Limited 91

/pps/system/keyboard/status

/pps/system/keyboard/control

/pps/services/input/control

HMI
keyboards

Q W E R T Y U I O P
A S D F G H J K L
Z X C V B N M

?123 , .

Q W E R T Y U I O P
A S D F G H J K L
Z X C V B N M

?123 , .

HTML
(part of Navigator)

Qt
(standalone)

keyboard-imf

QNX
Screen

Q W E R T Y U I O P
A S D F G H J K L
Z X C V B N M

?123 , .

Physical keyboard

Application input

Uncle Misha and the
Fat Cats:
“Heartless”, “Vixen”

Qt runtime

Tio Misha y los Gatones:
“Sin corazón”, “La zorra”

Weblauncher

Create

Create

Figure 7: Keyboards, keyboard-imf and applications.

Physical keyboard

To use a physical keyboard (connected through a USB port), you need to:

• Configure the QNX Screen globals input parameter in the Screen configuration

file (graphics.conf) to accept input from a physical keyboard. For more

information, see “Configuration parameters for globals” in the Screen Graphics

Subsystem Developer's Guide.

• Make sure that your system has the language-specific key mapping files for the

languages you will support. These files should be in the /usr/share/keyboard/

directory.

92 © 2014, QNX Software Systems Limited

Keyboard

Keyboard (keyboard-imf)

Display and manage the on-screen keyboard

Syntax:

keyboard-imf [-d device] [-U group:user]

Options:

-d

The display required for the board. See “Display types (p. 93)” below.

-U UID:GID

The user ID and the group ID under which to run keyboard-imf.

Description:

The keyboard-imf service acts as an intermediary between applications requiring

keyboard functionality and underlying keyboard services.

For more information about how keyboard-imf interacts with applications and

underlying keyboard services, see “Keyboard (p. 91)”.

Display types

The -d must be set for your board's display. For OMAP5432 boards, set it to hdmi;

for SABRE Lite boards, set it to internal. Possible display types are listed in the

etc/graphics.conf configuration file. When you are configuring your system, you

will need to edit this file and enter the display type(s) supported on your board, as

well as other graphics configuration values.

For more information about the etc/graphics.conf configuration file and how to

configure it, see the chapter “Screen Configuration” in the Screen Graphics Subsystem

Developer's Guide.

PPS objects

Applications must subscribe to this PPS object to communicate with the keyboard.

The HMI keyboard service creates these PPS objects to communicate with

keyboard-imf:

• /pps/system/keyboard/control

• /pps/system/keyboard/status

In addition, the keyboard-imf service creates this PPS object:

© 2014, QNX Software Systems Limited 93

Keyboard (keyboard-imf)

• /pps/services/input/control/. This object is for internal communication

between keyboard-imf and the HMI; other components and applications don't

need to publish or subscribe to this object.

94 © 2014, QNX Software Systems Limited

Keyboard

Chapter 8
MirrorLink

When a MirrorLink device is connected, MirrorLink apps are available to launch.

Overview

The QNX CAR platform supports the MirrorLink technology standard (version 1.1) to

enable MirrorLink apps on a smartphone to work with the car's HMI.

This document covers the following topics:

• Devices supported (p. 95)

• Network sandbox (p. 95)

• PPS interface (p. 96)

• Licensing (p. 96)

• The MirrorLink services (mlink-daemon, mlink-rtp, and mlink-viewer)

Devices supported

Although any MirrorLink Certified server device (phone) should work, we have tested

the following phones with the QNX CAR platform 2.1:

• Samsung Galaxy S III (with DriveLink app)

• Nokia 701 and E7 (with Nokia's Car Mode and MirrorLink app installed—note that

the free non-MirrorLink version of Car Mode will not work.)

For the current list of MirrorLink Certified server devices, see the following page at

the Car Connectivity Consortium (CCC) site (using the Servers search filter):

MirrorLink™ Certified Product Listing

You need to have the appropriate MirrorLink app for the device installed. Once

you plug in the phone, the MirrorLink apps should appear in the HMI's apps

section (under ALL). On some phones you must unlock the phone and start

the MirrorLink app manually before connecting the phone to the head unit.

Network sandbox

To access a device, MirrorLink services need the devnp-ncm.so driver to be loaded

into an io-pkt network stack. You should use a separate network stack for

MirrorLink—by convention, this stack should use the /mirrorlink_sandbox prefix.

It's important to set an instance number for this network stack to prevent

mount commands from loading drivers into this stack.

© 2014, QNX Software Systems Limited 95

http://www.mirrorlink.com/
https://cert.mirrorlink.com/ProductListing/

To use SLM to start the network sandbox, add this component section to the SLM

configuration file:

<SLM:component name="mirrorlink-sandbox">
 <SLM:command>io-pkt-v6-hc</SLM:command>
 <SLM:args> -i1 -d ncm pnp -ptcpip prefix=/mirrorlink_sandbox</SLM:args>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
 <SLM:waitfor wait="pathname">/mirrorlink_sandbox/dev/socket</SLM:waitfor>
 <SLM:depend>usb</SLM:depend>
 <SLM:depend>pps-setup</SLM:depend>
</SLM:component>

To debug the network sandbox, you can use ifconfig, dhcp.client, and other

network utilities by setting the SOCK environment variable to the sandbox's prefix:

SOCK=/mirrorlink_sandbox/ ifconfig

PPS interface

The mlink-daemon service uses these PPS objects:

Contains:This PPS object:

Information about the VNC-typed MirrorLink apps

that are currently available.

/pps/services/mirrorlink/applications

Information about the MirrorLink entities (devices)

that are currently available.

/pps/services/mirrorlink/entities

RTP audio-streaming information for MirrorLink

apps.

/pps/services/mirrorlink/rtp

The list of apps installed on the system./pps/system/navigator/applications/applications

Licensing

The three MirrorLink services use RealVNC licensing as follows:

mlink-daemon

Although this service doesn't need the license file for discovering devices,

it uses the file for audio (the Audio SDK has an implicit dependency on the

Viewer SDK, which requires the license file).

mlink-rtp

Doesn't need a license file.

mlink-viewer

This service uses the Viewer SDK; it cannot work at all without the license

file.

96 © 2014, QNX Software Systems Limited

MirrorLink

The license file resides under /etc/vnclicense by default, but you can use the

-L command-line option (to both mlink-daemon and mlink-viewer) to change

this location.

Although some features of these services will work without a license file, all

of these services depend on the RealVNC SDKs and require proper licensing

from RealVNC.

© 2014, QNX Software Systems Limited 97

The mlink-daemon service—discoverer, launcher, and audiorouter

Overview

The mlink-daemon service uses the RealVNC Discovery SDK to detect new MirrorLink

devices.

When a new device is detected, the device's MirrorLink applications are published to

a PPS object (/pps/system/navigator/applications/applications). The

service also creates a shortcut for the application (in the /apps/ directory). Note that

there's a limit of 10 MirrorLink applications.

The mlink-daemon service also negotiates RTP audio connections with the device

and notifies mlink-rtp of these connections. Note that the mlink-daemon service

doesn't need a RealVNC license file for discovering devices, but it uses the license

for audio connections.

The service also has a native message-passing interface, which is used by

mlink-viewer for requesting a MirrorLink application to be launched.

Command line

mlink-daemon [-A path_to_applications_object] [-a

path_to_shortcut] [-D] [-I lo0;en0...] [-i path_to_icon.png]

[-L path_to_vnclicense] [-P pps_dir] [-S]

Options

-A path_to_applications_object

98 © 2014, QNX Software Systems Limited

MirrorLink

Override location of the

/pps/system/navigator/applications/applications PPS object.

-a path_to_shortcut

Override installation path for shortcuts for MirrorLink apps (default: /apps/).

-D

Don't run in the background after successful initialization.

-I

Semicolon-separated list of interfaces to ignore (default: lo0).

-i path_to_icon.png

Set default icon for MirrorLink apps. If multiple -i options are used, the

service will use the last icon that was successfully loaded.

-L path_to_vnclicense

Specify location of VNC license file (default: /etc/vnclicense).

-P pps_dir

Base directory for PPS objects (default: /pps/mirrorlink/).

-S

Strictly enforce sandboxing, i.e., don't start with the default network stack.

To set the network sandbox, use the SOCK environment variable. If the -S

option is used, the service won't start if this environment variable isn't set.

A network sandbox is highly recommended!

USB device enumeration

When mlink-daemon starts up, the RealVNC Discovery SDK listens for new devices.

The SDK relies on PPS objects (under /pps/services/vnc/discovery/usb/)

to detect new USB devices. The SDK also sends the MirrorLink NCM USB command

to the device to start the MirrorLink server.

The following scripts are used for enumeration:

DescriptionScript

Rules for USB enumeration with whitelist for known

devices.

/etc/usblauncher/rules.lua

This script is used by usblancher to create the PPS

object (under

/scripts/vncdiscovery/usb-device-attached.sh

© 2014, QNX Software Systems Limited 99

The mlink-daemon service—discoverer, launcher, and audiorouter

DescriptionScript

/pps/services/vnc/discovery/usb/) for the

USB device and to request an IP address from the

NCM device. When the device is disconnected, the

PPS object is removed. The script also contains the

blacklist for known incompatible devices.

Using the whitelist isn't future proof—you'll need to manually add new

MirrorLink devices to the whitelist. Remember to disable the whitelist and

improve the blacklist for deployment.

Using SLM to start the service

To use SLM to start mlink-daemon, add this component section to the SLM

configuration file:

<SLM:component name="mlink-daemon">
 <SLM:command>mlink-daemon</SLM:command>
 <SLM:args>-S -i /usr/mlink/default.png -L /usr/mlink/vnclicense</SLM:args>
 <SLM:envar>SOCK=/mirrorlink_sandbox/</SLM:envar>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
 <SLM:depend>mirrorlink-sandbox</SLM:depend>
</SLM:component>

100 © 2014, QNX Software Systems Limited

MirrorLink

The mlink-rtp service—RTP audio streaming

Command line

mlink-rtp [-D] [-P pps_dir] [-S]

Options

-D

Don't run in the background after successful initialization.

-P

Base directory for the rtp PPS object (default: /pps/mirrorlink/).

-S

Strictly enforce sandboxing, i.e., don't start with the default network stack.

To set the network sandbox, use the SOCK environment variable. If the -S

option is used, the service won't start if this environment variable isn't set.

A network sandbox is highly recommended!

PPS object

The mlink-rtp service reads the rtp object for audio-streaming information published

by the mlink-daemon service. For details, see the entry for

/pps/services/mirrorlink/rtp in the PPS Objects Reference.

Using SLM to start the service

To use SLM to start mlink-rtp, add this component section to the SLM configuration

file:

<SLM:component name="mlink-rtp">
 <SLM:command>mlink-rtp</SLM:command>
 <SLM:args>-S</SLM:args>
 <SLM:envar>SOCK=/mirrorlink_sandbox/</SLM:envar>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
 <SLM:depend>mirrorlink-sandbox</SLM:depend>
</SLM:component>

© 2014, QNX Software Systems Limited 101

The mlink-rtp service—RTP audio streaming

The mlink-viewer service—MirrorLink viewer app

Overview

The MirrorLink viewer app (mlink-viewer) lets the car's HMI view and control the

content on a smartphone or other supported MirrorLink device.

Command line

mlink-viewer [-D] [-H] [-h number] [-L path_to_vnclicense] [-l

app_number] [-R] [-S] [-w number]

Options

-D

Test mode: launch the application and show the command string, but don't

start the viewer.

-H

Show simple HMI, which has to be an image with a width of 123 pixels.

This will be visible on the right side of the screen. The top half of this region

functions as the device's home button, the bottom half as a back button.

-h

Height (in pixels) of the main window (default: full screen; the actual size

depends on the attached screen and system configuration).

-L

102 © 2014, QNX Software Systems Limited

MirrorLink

Specify location of VNC license file (default: /etc/vnclicense).

-l

Launch the specified MirrorLink app using its app_number (0 to 9; default:

0). See /pps/services/mirrorlink/applications for more

information.

-R

Reduced resolution mode. If the device supports server-side scaling, the

requested resolution will be only half of the available resolution of the VNC

window. On high-resolution or low-performance devices, this mode has

significant performance advantages.

-S

Strictly enforce sandboxing, i.e., don't run the viewer with the default network

stack. To set the network sandbox, use the SOCK environment variable. If

the -S option is used, the service won't start if this environment variable

isn't set. A network sandbox is highly recommended!

-w

Width (in pixels) of the main window (default: full screen; the actual size

depends on the attached screen and system configuration).

The viewer doesn't quit when the device is

disconnected.

© 2014, QNX Software Systems Limited 103

The mlink-viewer service—MirrorLink viewer app

Chapter 9
Navigation Engine

The QNX CAR platform is designed to support a variety of third-party navigation engines.

Overview

For this release, the QNX CAR platform includes the Elektrobit EB street director as

the default navigation engine. The platform provides a reference navigation integration,

demonstrating the “command and control” between the HMI and the participating

components—navigation engine, window manager, PPS interface, and so on.

OpenGL
map

EB navigation

EB SDK

QDB

POI

SQLite

Browser engine

SQL plugin PPS plugin

Navigation
extension

Navigation application

Figure 8: High-level view of navigation integration in the QNX CAR platform.

For more information about the QNX CAR navigation engine, see “Navigation” in the

QNX CAR Architecture Guide. For more information about using the navigation engine

HMI, see “Navigation” in the QNX CAR User's Guide chapter “A Guided Tour of the

HMI”.

Configuration

The QNX CAR platform checks the

/target/board.variant/var/etc/services-enabled configuration file to

know which services are enabled. To enable navigation on your system, set the NAVI

GATION attribute in this file to true. For example:

APKRUNTIME:true
DLNA:false
WIFI:true
NAVIGATION:true
APPUPD:false

If you are working with a configuration that has had the navigation engine disabled,

as well as configuring the services-enabled file you may need to change the

© 2014, QNX Software Systems Limited 105

tablist.json file so that it displays a navigation tab correctly. To do this, you need

to edit the tablist.json file:

1. Run the following command: mount -uw /base to remount the /base filesystem

as read-write (instead of the default read-only).

2. Open the /target/usr/hmi/common/js/tablist.json file and edit the

configuration information. For example, to make Tab 3 the navigation tab, your file

should have an entry like this:

"tab3": {
"id": "navigation",
"type": "local",
"order": "3",
"name": "Navigation",
"opts": {
 "class": "nav"
 }
}

When you have finished your edits, don't forget to remount the /base

filesystem so that it's read-only again (mount -ur /base).

Elektrobit street director

The current QNX CAR release comes with the Elektrobit (EB) street director.

The EB street director navigation engine is called /apps/eb-navigation. If you

are debugging your implementation and need more detailed information in the logs,

just start the navigation engine with greater verbosity. For example: -vvvvvvvv.

The configuration file for the EB street director is

/apps/eb-navigation/ebnav.conf. For more information about this file and

configuring the EB street director, please see your Elektrobit documentation.

PPS objects

The navigation engine uses the following PPS objects:

• /pps/qnxcar/navigation/control

• /pps/qnxcar/navigation/geolocation

• /pps/qnxcar/navigation/options

• /pps/qnxcar/navigation/status

106 © 2014, QNX Software Systems Limited

Navigation Engine

Chapter 10
Network Manager (net_pps)

PPS interface to the network manager

Syntax:

net_pps [-A addr:port][-a]
[-c file] [-d] [if0...] [-m]
[-P script] [-p prefix] [-r name [if0...]]
[-S uid] [-s] [-u] &

Options:

-A addr:port

Proxy to publish when proxy authentication is required.

-a

Automatically configure any discovered interfaces when the link state

indicates that the interfaces are connected.

-c file

Specify configuration file (default: /etc/net_pps.conf).

-d

Enable debug messages (to stdout).

if0...

Specify prioritized list of interfaces to be considered for multihomed

operation, preference of default routes, confstr resolver configuration,

etc.

-m

Use multipath routes.

-P script

Specify the script to run for updating proxy settings.

-p prefix

© 2014, QNX Software Systems Limited 107

Add this prefix to all executable paths. This has no effect without the -s

option.

-r name [if0...]

Create another routing domain (called name) with the following prioritized

interface list.

-S uid

Run subprocesses as this uid.

-s

Use standard file paths for subprocess executables (defaults:

system=/usr/sbin/ user=/usr/bin/).

-u

Automatically assume the interface is connected based on its up state. This

allows shim drivers as well as drivers that don't issue link state changes to

work.

Description:

The net_pps service offers a PPS interface for communicating with the QNX network

manager. For more information about QNX support for networking, see “Networking

Architecture” in the System Architecture Guide.

For more information about the instructions net_pps can send to the network manager,

and the information it can receive, see the relevant PPS object descriptions:

• /pps/services/networking/all/interfaces/<interface>

• /pps/services/networking/all/proxy

• /pps/services/networking/all/status_public

• /pps/services/networking/control

• /pps/services/networking/proxy

• /pps/services/networking/status

• /pps/services/networking/status_public

Configuration

The net_pps service uses the /etc/net_pps.conf configuration files. To configure

network manager behavior, edit the parameters in this plain-text file.

108 © 2014, QNX Software Systems Limited

Network Manager (net_pps)

Chapter 11
Now Playing Service

The now playing service arbitrates between media players (including phones) and

media controllers on the system, so that their activities do not clash, and publishes

information about their activities. Applications can use this information to help them

manage concurrent audio streams.

Overview

The now playing service arbitrates between the different media players (including

phones) and media controllers on the system, and publishes information about media

player activity. The audio manager is used to control audio stream routing, volume,

and ducking behavior.

The now playing service (nowplaying) can be used along with the audio manager to

manage audio stream concurrency and ensure that:

• the audio stream with the highest priority takes precedence and has access to the

preferred output device(s)

• other audio streams are attenuated or muted, as required by the system

configuration

• media playback is stopped or paused when an audio stream is “ducked” in favor

of a higher priority audio stream, and restarted when appropriate

The now playing service supports two distinct PPS interfaces, one for media players

(including phones), and one for media controllers. Each interface has its own PPS

objects (p. 113).

Media players

All media players on a system should register with the now playing service and subscribe

to the media player PPS objects in order to receive information about the other media

players on the system. They should also publish information about their activities to

these objects, so that the now playing service can know what they are doing and make

this information available to the other media players. Media players can also use these

objects to publish metadata about the media they are playing, and receive control

commands, such as pause and resume.

For example, the phone application (which generally has precedence over other media

players) should use the now playing service to inform other media players when a call

comes in, so that they can pause playback during the call.

© 2014, QNX Software Systems Limited 109

Media controllers

Media controllers on the system (such as a controller tied to the physical buttons on

a phone) should subscribe to the media controller PPS object, so that they can receive

information about the content (if any) that is currently playing on the system. They

can also publish requests to this object when they need to control playback of the

currently active media player in the system.

110 © 2014, QNX Software Systems Limited

Now Playing Service

Using the now playing service

To use the now playing service, applications should register with the service, and

publish and subscribe to the relevant PPS objects.

Managing audio

The audio manager looks after audio routing to output devices (and from input devices),

and attenuating or muting output according to configured audio type priorities. When

your application opens a PCM stream, it should also get an audio manager handle so

that the audio manager will know about the stream. You should specify the same audio

stream type for the audio manager handle as for the PCM stream handle to ensure

that audio manager routes, and attenuates or mutes the audio stream as specificied

by your system's configuration.

To get a PCM stream handle and an audio manager handle, call

audio_manager_snd_pcm_open(), then audio_manager_get_handle(); or

audio_manager_snd_pcm_open_name().

Managing playback

The audio manager doesn't look after your application's media playback, however. If

you open a PCM stream and get an audio manager handle for that stream but do not

use the now playing service, when your application's audio is muted or attenuated

(ducked), playback will continue. To ensure that the preferred behavior can be

implemented, your application should:

1. Register with the now playing service, and publish its activities to the appropriate

PPS objects:

• /pps/services/multimedia/mediacontroller/control

• /pps/services/multimedia/mediaplayer/control

• /pps/services/multimedia/mediaplayer/phone.

2. Subscribe to /pps/services/multimedia/mediaplayer/status to receive

the status updates that the now playing service publishes to this object.

3. When it learns that the status of its audio stream has changed, stop, pause, resume,

or allow playback to continue, as required.

The now playing service does not control audio output or playback. It informs

applications that have registered with the PPS objects it uses of changes in

the status of audio streams. The decision of what to do when the status of an

audio stream changes is the responsibility of your application.

© 2014, QNX Software Systems Limited 111

Using the now playing service

For more information about PPS, see the QNX Persistent Publish/Subscribe Developer's

Guide

112 © 2014, QNX Software Systems Limited

Now Playing Service

Now playing service PPS objects

The now playing service uses PPS objects to communicate with applications.

The now playing service uses the PPS objects listed below. For information about

these objects, see the relevant pages in the PPS Objects Reference.

• /pps/services/multimedia/mediacontroller/control

• /pps/services/multimedia/mediaplayer/control

• /pps/services/multimedia/mediaplayer/phone

• /pps/services/multimedia/mediaplayer/status

© 2014, QNX Software Systems Limited 113

Now playing service PPS objects

Now Playing Service (nowplaying)

Arbitrate between the different media players (including phones) and media controllers

on the system so that they do not clash

Syntax:

nowplaying [-1] [-S] [-U UID:GIG] [-v]

Options:

-1

(“one”) Display only one volume dialog at a time.

-S

Write log to the stderr in addition to sloginfo.

-U number

The user ID and group ID which nowplaying should assume so that it

doesn't have to continue running as root.

-v

Set verbosity of output to slog2.

Description:

The nowplaying service monitors media players, media controllers, and phones, and

publishes PPS objects with information about their activities. Applications can use

this information to help them manage concurrent audio streams.

See also:

• Audio Manager Library Reference

• /pps/services/multimedia/mediacontroller/control

• /pps/services/multimedia/mediaplayer/control

• /pps/services/multimedia/mediaplayer/phone

• /pps/services/multimedia/mediaplayer/status

114 © 2014, QNX Software Systems Limited

Now Playing Service

Chapter 12
Radio

The QNX CAR platform includes a reference radio service, which runs on the Texas

Instruments J5 ECO EVM811x EVM board.

Overview

The QNX CAR platform's reference radio service, RadioApp, is provided in collaboration

with Texas Instruments and runs on the J5 ECO board. It interacts with the DSP on

this board to offer tuning, band selection, scanning and RDS (Radio Data System). It

uses the QNX PPS service to communicate with the HMI.

For information about starting up and running RadioApp, see RadioApp (p. 116).

If you create a custom image, you must use the RadioApp's -L option to

reserve memory for the service.

Connecting external components

To use the reference radio, you will need to connect an antenna, and headphones or

speakers to the board. If you consider the top of the board to be the edge with the

AM-FM switch:

• The antenna should be connected to the J1 AM-FM port.

• The headphones or speakers should be connected to the third jack from the bottom,

on the left-hand side of the board.

PPS objects

The QNX CAR platform uses these PPS objects to communicate with the reference

radio:

• /pps/radio/ti_control

• /pps/radio/ti_rds

• /pps/radio/ti_statsus

The platform also has the following PPS objects to exchange simulated radio

information, which the QNX CAR HMI can use for its radio displays. These objects are

not currently used by the radio service. They are:

• /pps/radio/command

• /pps/radio/status

• /pps/radio/tuners

© 2014, QNX Software Systems Limited 115

RadioApp

Support a reference radio service on the TI Jacinto 5 board

Syntax:

RadioApp -p 0 -f path -h pps [-L address,size]

Options:

-p 0

TI command-line option; must be “0” (zero).

-f path

The path to the ELF configuration file.

-h

Instruct the service to use PPS. Must be “pps”.

-L address,size

Reserve memory for the service. Use only if creating a custom image. If

used, values must be “0x96C00000,0x8D00000”. The first number is the

address and the second is the size of the memory allocation.

Description:

The RadioApp service is provided by Texas Instruments. Note the following about

using this service:

• RadioApp uses the ELF configuration file jive_dsp_app_elf.out. This is a

binary file, and it should not be altered. Use the -f at startup to indicate the

location of this file.

• The following processes must be running before starting RadioApp: mq and

syslink_drv.

• If you create a custom image, you must use the -L option to reserve memory for

the service.

For more information about the QNX CAR reference radio implementation, see Radio

(p. 115).

116 © 2014, QNX Software Systems Limited

Radio

Chapter 13
Realtime Clock Synchronization

To ensure time-dependent applications run successfully, the system clock synchronizes

with a reliable, Internet-based time source when the system is booted.

You must have a working Internet connection for the system clock to be properly

set.

Applications such as The Weather Network and Pandora use SSL to securely access

websites they need for their operations. When the system clock deviates from the

actual (correct) time, those applications can fail because they can't validate a website's

certificate. Changing the time “on-the-fly” can cause key platform components, notably

the JavaScript core, to fail. As a result, this operation isn't allowed once the HMI has

loaded, so the system clock must be set during startup, before the HMI loads.

On systems without battery-powered backup for their realtime clock (RTC)—such as

the Freescale i.MX6Q SABRE Lite board—the clock setting is lost when the hardware

is powered off. To address this problem, the system startup script sets the system

clock to the RTC's setting. If the date and time are earlier than a threshold time value

that's hardcoded for the QNX CAR system, the system assumes the RTC isn't set

properly and then tries to synchronize both the RTC and the system clock with an NTP

server (which requires an Internet connection).

On hardware that does have battery backup, the RTC is typically set even before the

OS image is installed. In this case, the date and time will be later than the threshold

time value, so the startup script won't try to synchronize the RTC and system clock.

For more information about the QNX realtime clock, see rtc in the QNX Software

Development Platform Utilities Reference.

© 2014, QNX Software Systems Limited 117

Chapter 14
Shutdown service (coreServices2)

Provide access through PPS communication to a variety of services, including shutdown.

Syntax:

coreServices2 [-r path] [-U UID:GIG] [-S UID:GIG] [-M UID:GIG]
[-l none|module[,module]*] [-v]* [-d] [-C

configuration file]

Options:

-r path

Specify the root path to the PPS service. Default is /pps/services.

-U

The username or the UID:GID,GID specifying the user and group IDs of the

main server process.

-S

The username or the UID:GID,GID specifying the user and group IDs of the

spawner process.

-M

The username or the UID:GID,GID specifying the user and group IDs of the

monitor process.

-l none|module[,module]*

If specified, use this list of dynamic modules instead of the dynamic modules

listed in the configuration file.

-d

Run in foreground instead of as a daemon (default).

-v

Set verbosity of output to sloginfo.

-C filename

The filepath and filename of the configuration file.

© 2014, QNX Software Systems Limited 119

Description:

The coreServices2 utility provides a single point from which to ask the system to

run a variety of services. It handles the house-keeping, while communication is through

PPS. This design means that the requesting component or application only needs to

publish and subscribe to the relevant PPS objects.

The QNX CAR platform uses coreServices2 to provide access from the HMI to the

shutdown service.

coreServices2 objects

The coreServices2 service maintains an object for every service to which it gives

access. Each object represents a single service. An object may be static (compiled

into the coreServices binary) or dynamic (loaded through dlopen() at runtime).

Most basic services are static, but some services that are large (or that require large

shared libraries) and are not needed by all implementations are made available as

dynamic modules.

In the QNX CAR platform, coreServices2 maintains the following statically loaded

object:

shutdown

Shut down and reboot the system. See shutdown.

In the QNX CAR platform, coreServices2 doesn't use any dynamically loaded

modules.

PPS objects

The coreServices2 service publishes or subscribes to the following PPS object:

• /pps/qnxcar/system/info

Configuration file

A configuration file specifies the core services that will be used. The name and location

of the file is specified by the -C. In the QNX CAR platform, the configuration file is

located at /etc/system/config/coreServices2.json.

The file is a plain-text file built using the following syntax:

{
"static_modules" : comma separated string of static module names
"dynamic_modules" : comma separated string of dynamic module names
"disable_procmon" : Boolean: true|false
"disable_hwid" : Boolean: true|false
}

120 © 2014, QNX Software Systems Limited

Shutdown service (coreServices2)

For example, the configuration file at the time of writing includes only the shutdown

service, which is a static module:

{
"static_modules" : "shutdown",
"dynamic_modules" : "",
"disable_procmon" : true,
"disable_hwid" : true
}

© 2014, QNX Software Systems Limited 121

Chapter 15
Software Updates

The QNX CAR platform supports software updates by using Red Bend's vRapid Mobile®

FOTA software (v8.0.1.29). The reference HMI includes functionality for applying

software updates but the platform provides a library and resource manager that you

can use to develop your own update application.

As explained in the User's Guide, you can apply updates from the HMI or from the

command line. To apply an update, you'll need a delta file, which describes the

filesystem changes needed to upgrade your current system to a new version. You can

obtain a delta file from your system provider or generate your own delta file (p. 241).

If you update your system through the HMI, your update package must also include

a manifest file, which you must write. For details, see “Manifest file (p. 139)” in this

guide.

You can also write your own software update application based on the software update

library (swu-core) and resource manager (swud) shipped with the platform. The

library has an extensive API for defining updates (to represent software changes from

a base version to a target version) and update targets (to represent systems with

updatable software), and for assigning callback functions that carry out update tasks

such as installation and verification.

© 2014, QNX Software Systems Limited 123

Software update core library

The software update core library (swu-core) applies software updates to target

systems. The library manages the update process by coordinating with modules that

perform specific tasks, such as discovering manifest files, displaying pending updates

in the HMI, and initiating the installation of updates onto target systems.

The core library runs as part of the software update daemon (swud (p. 235)), which is

launched automatically during startup. You can instruct the daemon to load all the

modules needed by the library to support software updates.

Architecture of swu-core library

The swu-core library maintains the data structures containing update information

and the state of the update process, but you must write your own modules to specify

how to carry out individual update tasks. This design lets you customize all the steps

involved in applying software updates.

The following diagram shows the swu-core library and the different modules involved

in the software update process:

Figure 9: Interaction between swu-core library and modules used for software updates

In Figure 9: Interaction between swu-core library and modules used for software

updates (p. 124), the swu-core library is shown in the center and is surrounded by

the modules that developers must write to build a complete software update

mechanism. The modules are as follows:

124 © 2014, QNX Software Systems Limited

Software Updates

HMI/User

Includes code to view the available software updates and to display the

progress of any updates currently being installed. This module also handles

requests, either automated or issued through a GUI, to accept or decline an

update.

Discovery

Locates software update manifest files and generates Update objects based

on these files. For example, this module could search attached USB devices

to discover manifest files and then invoke the library API to create objects

based on the manifest files found.

Configuration

Reads and sets the configuration options of the swu-core library. This

module must also implement any saving and restoring of configuration

options.

UpdateTarget

Represents a system that has updatable software. The library can support

many UpdateTarget objects concurrently.

Library components

The following diagram shows the internal components of the swu-core library:

Figure 10: Components in swu-core library

© 2014, QNX Software Systems Limited 125

Software update core library

As Figure 10: Components in swu-core library (p. 125) shows, the library is made up

of these parts:

Update List

A list of Update objects known to the library. Each object represents an

available update of a target system to a newer version.

UpdateTarget List

A list of UpdateTarget objects registered with the library. Each object

represents an accessible target system.

Event Thread

The main event thread. All callbacks are executed in the context of this

thread, so the client code should quickly exit from any callbacks to ensure

good performance of the library.

Configuration

Configuration options for the library. Note that the configuration isn't

persisted across reboots by the library, so the Configuration module

should save and restore the configuration.

Key concepts of the library

The swu-core library stores objects that represent pending software updates and

accessible target systems. It automates many aspects of interacting with these objects,

including memory management, data storage, and state transitions throughout the

update lifecycle.

Object handles

The library encapsulates the update data by hiding the implementation of objects.

Instead of offering direct access to individual data fields, the library provides a

high-level API that uses handles to refer to objects. For example, instead of working

with C-strings in an Update object, the caller must use the swu_update_get_name()

API function with an swu_update_t handle to access the update name stored in

that object.

Reference counting

Many objects in the swu-core library are reference-counted, including:

• swu_string_t

• swu_uri_t

• swu_client_id_t

• swu_update_t

126 © 2014, QNX Software Systems Limited

Software Updates

• swu_target_t

When working with these handle types, you should call swu_object_retain() to increment

the reference count. Most API functions that return these handle types must call this

function before exiting. When you're finished with a handle, you should call

swu_object_release() to decrement the reference count, to indicate that you no longer

need the object associated with that handle. When the reference count reaches zero,

the library frees the associated object's memory. Calling the release function when

you no longer need a handle is important to prevent memory leaks.

Update object

An Update object represents a software update that can be installed by a registered

UpdateTarget. All configuration information for the update and all actions to be

performed as part of it are specified in API calls to the Update object.

An Update object is meant for only one UpdateTarget (i.e., target system).

You'll need to create an Update object for each UpdateTarget.

Each Update object contains a state machine that drives the software update process.

The machine's state-transition diagram looks like this:

SWU_UPDATE_STATE_NEW

SWU_UPDATE_STATE_VERIFYING

SWU_UPDATE_STATE_VERIFIED

SWU_UPDATE_STATE_INSTALLING

SWU_UPDATE_STATE_INSTALL_COMPLETED

SWU_UPDATE_STATE_INSTALL_VERIFYING

SWU_UPDATE_STATE_INSTALL_VERIFIED

SWU_UPDATE_STATE_INSTALL_ERROR

Object was created

Object passed internal verification

Update was declined

Update installation
was accepted

Install process failedInstall process by
UpdateTarget
succeeded

Install was successful,
allow the UpdateTarget
to verify the update

Verification process
by UpdateTarget

succeeded
If the UpdateTarget didn’t
register a verify function,
move to verified state

after a successful installation

transition to the error state
Unexpected errors result in a

SWU_UPDATE_STATE_INSTALL_DECLINED

SWU_UPDATE_STATE_INSTALL_FAILED

Verfication process failed

Figure 11: State-transition diagram for Update objects

The states of the Update object are:

SWU_UPDATE_STATE_NEW

© 2014, QNX Software Systems Limited 127

Software update core library

The Update object has been created.

SWU_UPDATE_STATE_VERIFYING

The library is verifying the validity of the new object.

SWU_UPDATE_STATE_VERIFIED

The object's validity has been verified and the user or an application can

now accept or decline the update.

SWU_UPDATE_STATE_INSTALLING

The swu_update_accept_install() function was called to start the update and

the associated UpdateTarget object was found in the list of registered

targets. While the update is in this state, the library calls the

prepare_to_install() and install() functions in the registered interface of the

UpdateTarget object.

SWU_UPDATE_STATE_INSTALL_COMPLETED

The UpdateTarget successfully installed the update.

SWU_UPDATE_STATE_INSTALL_FAILED

The UpdateTarget encountered an error during the installation or

verification phase.

SWU_UPDATE_STATE_INSTALL_VERIFYING

The update was successfully installed and the UpdateTarget is verifying

that the installation is correct, in response to the library's call to the

verify_update() function. If the UpdateTarget doesn't register this function,

this state is skipped and the Update object transitions directly to the

SWU_UPDATE_STATE_INSTALL_VERIFIED state.

SWU_UPDATE_STATE_INSTALL_VERIFIED

The UpdateTarget successfully verified the update installation.

SWU_UPDATE_STATE_ERROR

An unexpected error occurred somewhere in the update lifecycle. The client

should log an error message by calling the registered swu_logging_callback_t()

function.

SWU_UPDATE_STATE_DECLINED

The update has been marked as declined, following a call to

swu_update_decline_install(). The update remains in this state and can't

be installed.

128 © 2014, QNX Software Systems Limited

Software Updates

UpdateTarget object

An UpdateTarget represents a system with updatable software. This object type is

generic so the swu-core library can support many different software update models.

You can register multiple UpdateTarget objects with the library, each of which has

its own implementation. For example, you could register multiple target objects to

support updating different micro-controllers on a car's vehicle network.

How software update applications integrate with swu-core

The swu-core API provides a comprehensive interface for integrating the modules

that implement parts of a software update application with the core update library.

Discovery

The Discovery module creates Update objects by loading manifest files in a call

to swu_client_create_updates(). To find manifest files, the discovery code could monitor

attached USB devices. Or, it could communicate with a server to request manifest

files. Regardless of how it finds manifest files (and their associated update packages),

the Discovery module must call swu_client_create_updates() to process them.

The following sample code creates Update objects based on a manifest file:

/* Function is called when a manifest file was located.
 The manifest ID is returned so that the updates can later be
 released with a call to swu_client_release_updates(). */

swu_manifest_id_t manifest_file_found (const char* path)
{
 swu_result_t result;
 swu_manifest_id_t id;

 /* Create the updates for the given path */
 result = swu_client_create_updates(path, &id);

 if (result == SWU_RESULT_SUCCESS)
 {
 /* Updates are created and should be accessible
 through the list of installed updates (accessed
 with swu_client_get_install_update_list()) */
 return id;
 }
 else
 {
 return SWU_INVALID_MANIFEST_ID;
 }
}

HMI

A software update application may need to perform many HMI-related tasks to provide

the user with sufficient information and control over the update process. The following

tasks can be completed in the HMI module by using the swu-core library:

1. Displaying the list of available updates

© 2014, QNX Software Systems Limited 129

Software update core library

Typically, an HMI needs to display the list of available software updates. The user

can navigate this list, display information about the updates, and then accept or

decline each update. To support this interaction, the library provides the

UpdateList data type, which allows you to hold a list of Update objects. There

are several functions for working with UpdateList objects:

swu_client_get_install_update_list()

Returns a handle to the list of software updates ready to be installed.

You can then use this handle in the remaining functions listed to interact

with the list.

swu_update_list_get_length()

Gets the length of the list of software updates.

swu_update_list_iterate()

Iterates over the Update objects in the list.

swu_update_list_register_notification()

Registers a swu_update_list_notification_t structure, which

stores a callback in its change_notifier field, to receive notifications from

an UpdateList.

swu_update_list_unregister_notification()

Unregisters a structure from receiving notifications.

After getting the handle to the list of available updates by calling

swu_client_get_install_update_list(), your client application can register for

notifications by calling swu_update_list_register_notification(). When the

UpdateList object changes (e.g., because Update objects are added to or

removed from the list), the library calls the callback in the registered

swu_update_list_notification_t structure to notify the client of the list

update. This callback can refresh the HMI to display the latest list contents by

iterating through the list and processing its Update objects.

The swu_update_list_iterate() function is the only way to access the contents of

an UpdateList object. When calling this function, you must pass in a function

pointer of the swu_update_list_iterator_t type to reference the code that

processes list items. The library calls this iterator function on each Update object

found in the list, and then one final time with a NULL value for the Update object

to indicate the list's end. The callback function can stop the list iteration at any

time by returning false instead of true, which tells the library to stop iterating

through the list.

130 © 2014, QNX Software Systems Limited

Software Updates

The following diagram shows how the iteration work is shared between the software

update application and the swu-core library:

UpdateList Iteration

Software Update Application swu Library

swu_update_list_iterate is called
The request to iterate the list is

processed and an iteration event is
posted

The supplied swu_update_list_iterator_t
function pointer is called with the first

Update object

The supplied swu_update_list_iterator_t
function pointer is called with the

second Update object

The supplied swu_update_list_iterator_t
function pointer is called with the final

Update object

The supplied swu_update_list_iterator_t
function pointer is called with a NULL
value to indicate the end of the list

The swu_update_list_iterator_t function
processes the Update object and returns

true to continue iterating the list

The swu_update_list_iterator_t function
processes the Update object and returns

true to continue iterating the list

The swu_update_list_iterator_t function
processes the Update object and returns

true to continue iterating the list

The swu_update_list_iterator_t
function handles the end-of-list call

Figure 12: Interaction between the application and the swu-core library during

UpdateList iteration

This code sample shows how to process the UpdateList after it has changed:

/* The function used as the swu_update_list_iterator_t
 callback */
bool iterate_list(swu_update_t update,
 void *context)
{
 /* When iterating the list, the library calls this
 function a final time with a NULL object reference to
 indicate the end of the list */
 if (update != NULL)
 {
 /* Call the necessary APIs on the Update object */

 }

 /* Return true to continue iterating through the list */
 return true;
}

© 2014, QNX Software Systems Limited 131

Software update core library

/* The function for reacting to a list update notification */
void updatelist_changed(swu_update_list_t list,
 void *context)
{
 /* Our list has changed--refresh the display by processing
 the current list items, using the specified callback
 to iterate through the list */
 swu_update_list_iterate(list, iterate_list, NULL);
}

2. Displaying information about an update

The Update object provides an access function for each of its properties. You can

retrieve these properties and then display update information to the user. The

property functions include:

• swu_update_get_name()

• swu_update_get_description()

• swu_update_get_version()

• swu_update_get_priorty()

Further information on these and other Update functions can be found in the SWU

library API (p. 142).

The following sample prints the name and version of an Update object to stdout.

Because these functions all return handles to swu_string_t data items, the

strings contained in these items must be released with a call to swu_object_release()

after the caller is done with them.

void print_update_object(swu_update_t update)
{
 swu_string_t name;
 swu_string_t version;

 if (swu_update_get_name(update, &name) ==
 SWU_RESULT_SUCCESS)
 {
 printf("Object name is %s\n", name);
 swu_object_release(name);
 }

 if (swu_update_get_version(update, &version) ==
 SWU_RESULT_SUCCESS)
 {
 printf("Object version is %s\n", version);
 swu_object_release(version);
 }
}

3. Acting on an update

To inform the library of the user's decision whether or not to install an update, the

HMI module must call one of these two API functions:

swu_update_accept_install()

132 © 2014, QNX Software Systems Limited

Software Updates

Requests installation of the software update to begin on the corresponding

target.

swu_update_decline_install()

Declines installation of the software update.

Typically, you call these functions after iterating through the list of updates and

finding a particular Update object to take the action on.

4. Installing an update

After you accept the installation for an Update object, the library notifies the

associated UpdateTarget object to begin the installation. To monitor the

installation status, your software update application should call

swu_update_register_notifications() to register callbacks so it will be notified when

the state or progress of the installation changes. The

swu_update_notifications_t structure contains two notification callbacks:

state_changed

Called when the Update object changes state, as shown in the

State-transition diagram for Update objects (p. 127).

progress

Called when the UpdateTarget indicates a change in progress while

the Update object is in the SWU_UPDATE_STATE_INSTALLING or

SWU_UPDATE_STATE_VERIFYING state.

These notifications can be used to refresh progress bars in the HMI or process a

change in the installation status. The change-of-status processing could involve

displaying errors when necessary. For example, suppose the Update object

transitions to the SWU_UPDATE_STATE_INSTALL_FAILED state. The client could

then call swu_update_get_failure_info() to retrieve the failure code, and then display

that code and other error information in the HMI or write this data to an error log.

The following sample calls swu_update_accept_install() and then registers and

monitors these callbacks:

void handle_state_change(swu_update_t update,
 swu_update_state_t state,
 void *state_changed_context)
{
 if (state == SWU_UPDATE_STATE_INSTALL_FAILED)
 {
 swu_failure_info_t info;
 if (swu_update_get_failure_info (update, &info)
 == SWU_RESULT_SUCCESS)
 {
 /* Tell the user about the failure */

 }

© 2014, QNX Software Systems Limited 133

Software update core library

 }
 else
 {
 /* Handle other state changes */

 }
}

void handle_progress_change(swu_update_t update,
 swu_progress_t percent,
 void *progress_context)
{
 /* Refresh the progress percentage in the HMI */
 update_progress_display(update, percent);
}

static swu_update_notifications_t notifications =
 { handle_progress_change, NULL,
 handle_state_change, NULL };

void accept_install(swu_update_t update)
{
 if (swu_update_accept_install(update) ==
 SWU_RESULT_SUCCESS)
 {
 swu_update_register_notifications(
 update, ¬ifications);
 }
}

UpdateTarget

Each UpdateTarget object supports installing a software update on a target system.

You can register multiple UpdateTarget objects with the library, but each Update

object that you create can work with only one UpdateTarget.

An update application must do these tasks for an UpdateTarget:

1. Register with the library

Before it can install a software update, an UpdateTarget must be registered with

the library. Through the swu_target_register() function, you can provide the library

with the target's vendor ID and hardware ID (for identifying it) and with a pointer

to an swu_target_interface_t structure (for communicating with it). Multiple

UpdateTarget objects may share the same swu_target_interface_t, but

each of these registered objects must have a unique combination of vendor ID and

hardware ID to distinguish it from other targets.

When the registration succeeds, the library returns an swu_target_id_t handle,

which you must use to refer to that same UpdateTarget in subsequent API calls.

The following sample shows a simple UpdateTarget registration:

swu_target_id_t register_target(const char *vendor_id,
 const char *hardware_id)
{
 /* We define only the get_info() and install() function
 pointers in this interface */
 swu_target_interface_t interface = {get_target_info, NULL,

134 © 2014, QNX Software Systems Limited

Software Updates

 NULL, NULL,
 install_update, NULL,
 NULL, NULL,
 NULL, NULL,
 NULL, NULL};

 /* Store the ID assigned by the swu-core library.
 The ID is needed in future API calls. */
 swu_target_id_t assigned_id;

 if (swu_target_register(vendor_id,
 hardware_id,
 &interface,
 &assigned_id) ==
 SWU_RESULT_SUCCESS)
 {
 return assigned_id;
 }
 else
 {
 return SWU_INVALID_TARGET_ID;
 }
}

In this sample, most function pointers in the swu_target_interface_t

structure are left undefined. The swu-core library considers any function

that has a reference pointer of NULL to be unsupported. In this case, the

library skips that step in the software update process and tries to continue

the installation at the next step.

2. Retrieve information about the target

The function defined by the get_info() pointer in the UpdateTarget interface

retrieves the properties describing the current version of software installed on the

target. The library calls this interface function when handling a call to the

swu_target_get_info() API function and after an update was successfully verified

by an UpdateTarget. In the latter case, the get_info call ensures that the library

has up-to-date target information following a successful update, which might have

changed some aspect of the UpdateTarget.

3. Implement software update functions

To carry out the update process, the library calls the functions referenced by the

pointers in the swu_target_interface_t structure. In each of these functions,

the UpdateTarget must call a success or failure function at some point to tell

the library whether to continue with the update process.

The interaction between the UpdateTarget object and the library proceeds like

this:

a. When a call from the HMI module to swu_object_accept_install() completes

successfully, the library calls the prepare_to_install() function defined for the

UpdateTarget. In this function, the UpdateTarget examines its state to

determine whether it can install the update. If so, the UpdateTarget calls

© 2014, QNX Software Systems Limited 135

Software update core library

swu_target_ready_to_install(); if not, it calls swu_target_not_ready_to_install().

If no prepare_to_install() function is defined, the library skips this step.

b. Next, the library calls the provided install() function and the UpdateTarget

begins installing the software update. During the installation, the

UpdateTarget can call swu_target_install_progress() to inform the swu-core

library (and any registered listeners of the associated Update object) of the

installation progress.

If the installation succeeds, the UpdateTarget calls

swu_target_install_successful(); otherwise, it calls swu_target_install_failed().

c. When the installation completes, the library calls the provided verify_update()

function so the UpdateTarget can verify the installation. During the

verification, the UpdateTarget can call swu_target_verification_progress() to

inform the swu-core library (and any registered Update listeners) of the

verification progress.

If the verification succeeds, the UpdateTarget calls

swu_target_verification_successful(); otherwise, it calls

swu_target_verification_failed().

If the UpdateTarget doesn't support verification of update installations, which

means its verify_update() function pointer is set to NULL, the library skips the

verification step.

A successful update installation involving all three phases—preparation, installation,

and verification—is shown in the diagram that follows. The diagram lists the Update

object state changes and follow-up actions taken by the library in response to

notifications it receives from the UpdateTarget:

136 © 2014, QNX Software Systems Limited

Software Updates

Figure 13: Interaction between an UpdateTarget object and the swu-core library

during an update installation

© 2014, QNX Software Systems Limited 137

Software update core library

Configuration

You can write a Configuration module that sets configuration attributes that apply

to all updates.

The UpdateClient data type stores and exposes, through the swu-core library

API, these attributes:

Client ID

read-only

An ID field that uniquely identifies an UpdateClient. This field is set

during library initialization.

Local updates

read/write

Enables or disables local (e.g., USB or flash) software updates for the

UpdateClient.

Update grace period

read/write

Grace period for accepting software updates, which indicates how long (in

seconds) an update will be available for installation. This attribute setting

is used for software updates that don't define their own grace period.

Maximum update retries

read/write

Maximum number of retries allowed for a software update. Note that this

attribute is currently unused.

The following code demonstrates how to get and set the update grace period:

/* Get the update grace period */
swu_result_t client_config_get_update_grace_period(
 swu_timestamp_t *period)
{

 swu_result_t result =
 swu_client_configuration_get_update_grace_period(period);

 if (result != SWU_RESULT_SUCCESS)
 {
 printf(
 "Error getting update grace period from swu client\n");
 }

 return result;
}

/* Set the update grace period */

138 © 2014, QNX Software Systems Limited

Software Updates

swu_result_t client_config_set_update_grace_period(
 swu_timestamp_t period)
{
 swu_result_t result =
 swu_client_configuration_set_update_grace_period(period);

 if (result != SWU_RESULT_SUCCESS)
 {
 printf(
 "Error setting update grace period on swu client\n");
 }

 return result;
}

Manifest file

A manifest file stores software update information, including the vendor and hardware

IDs of the target, timestamps, version numbers, and the size and path of the delta

file. You must provide a manifest file as part of an update package.

Structure

The manifest file follows the .ini file format, which has these characteristics:

• Each line is expected to be a key-value pair with an equal sign (=) separating the

two tokens.

• Comment lines start with a semicolon character (;).

• The first valid line (i.e., the line isn't a blank or a comment) of the file must indicate

the format version by using the format_version key.

You can describe multiple updates in one manifest file. Each set of fields describing

an update must begin with the id field wrapped in square brackets:

[id="UPDATE_ID"]

The lines that follow are treated as attributes of the same update until another update

is specified or the end of the file is reached. All updates require a certain minimum

set of fields:

ExampleRequiredDescriptionKey

action=CAN_DECLINE_IN

STALL,CAN_DEFER_INSTALL

NoComma-seperated list of actions

available for this update:

action

• SKIP_PROMPT_INSTALL

• CAN_DECLINE_INSTALL

• CAN_DEFER_INSTALL

base_version="00.00.00"NoExpected version of the software

currently installed on the target. The

base_version

UpdateTarget can use this field to

© 2014, QNX Software Systems Limited 139

Software update core library

ExampleRequiredDescriptionKey

determine if it can accept the

update.

format_version=20130918YesFormat version of the file. This must

be the first field set in the file.

format_version

Currently, the swu-core library

supports version 20130918.

grace_period=60000NoGrace period for the update. The

value is treated as a signed 64-bit

unixtime.

grace_period

hardware_id="CAR2.1"YesHardware ID, used with the value in

vendor_id to uniquely identify an

hardware_id

UpdateTarget when it's matched

with an Update.

[id="UPDATE_001"]YesUnique ID used by the update. This

field starts a new update record in

the manifest file.

id

long="The following bugs have

been addressed in this re

NoLong description of the update

contents. This field has no length

limit.

long

lease\n\t-Bug 77\n\t-Bug

88..."

max_defer_period=3600000NoMaximum deferral period for the

update. The value is treated as a

max_defer_period

signed 64-bit value representing Unix

time.

name="Security Release 242"YesName of the update.name

path=./up

date_file/the_file_to_use.bin

YesPath of the software update file. This

can be either an absolute path or a

path relative to the manifest file.

path

post_install_com

mand="/scripts/post_up

date.sh"

NoCommand string to be run by the

UpdateTarget after the install

completes.

post_install_command

pre_install_com

mand="/scripts/prepare_for_up

date.sh"

NoCommand string to be run by the

UpdateTarget before the install

starts.

pre_install_command

priority=3NoPriority level of the update. This

integer value must be between 1 and

priority

140 © 2014, QNX Software Systems Limited

Software Updates

ExampleRequiredDescriptionKey

20, where 1 is the highest priority

and 20 is the lowest.

short="Contains necessary bug

fixes"

NoShort description of the update

contents. This field has no length

limit.

short

size=22000000NoSize of the software update file (in

bytes). This is an unsigned 32-bit

integer value.

size

timestamp=1375119694NoRelease timestamp for the update.

The value is treated as a signed

64-bit value representing Unix time.

timestamp

vendor_id="QNX"YesVendor ID, used with the value in

hardware_id to uniquely identify

vendor_id

an UpdateTarget when it's

matched with an Update.

version="00.00.01"YesVersion of the software update.version

Sample file

; This is a sample manifest file.
; All manifest files must start with the format_version key
format_version=20130918

; A comment about this first update
[id="UPDATE001"]
vendor_id="QNX"
hardware_id="CAR2"
timestamp=1375116694
short="A simple update to test some things"
long="This is a simple test of the SWU system.\n\n\
 \tTabbed text on a new line"
version="00.00.01"
base_version="00.00.00"
name="Test Update"
action=CAN_DECLINE_INSTALL,CAN_DEFER_INSTALL
grace_period=600
size=2147483700
; This update points to a delta file in the same directory
path=mydelta.mld
pre_install_command="/base/scripts/prepare_self_update.sh"

; A comment about this second update
[id="UPDATE002"]
name="Another Test Update"
vendor_id="QNX"
hardware_id="CAR2"
long="This text description can be as long as need be,\
 provided you escape any line breaks in the text string"
version="00.00.01"
short="YATU (Yet another Test Update)"

© 2014, QNX Software Systems Limited 141

Software update core library

timestamp=1375119694
; This update points to an absolute path for a file elsewhere
; in the filesystem.
path=/dos/mydelta.mld

SWU library API

The SWU library API is exposed in six header files that define the constants, variable

types, data structures, and functions that your update application can use to manage

the update process. The API allows you to generate updates based on a manifest file,

read information on individual updates, and accept or decline an update. It can also

report progress and failures of active updates.

The first API function you must call is swu_client_initialize(), which sets up the library.

Next, you can call swu_client_create_updates() and pass in the path of a manifest

file, which specifies one or more updates. The library will generate Update and

UpdateTarget lists based on the manifest file contents.

Before you can apply updates to a target, you must register it with the library by calling

swu_target_register(), passing in a reference to an swu_target_interface_t

structure. This structure defines the callback functions that carry out the various

update tasks, including installation and verification. To receive progress information

while an update is being applied, you can call swu_update_register_notifications()

and register an swu_update_notifications_t structure, which defines callbacks

for handling progress notifications.

You can call the swu_update_get_* functions (in Update.h) to get useful information

such as the manifest file used to create the update, the base (i.e., current) version of

the software on the target, and a referent to the target. For the target, you read its

information with swu_target_get_info(). You can use the update and target information

to decide whether to proceed with the update and then call either

swu_update_accept_install() or swu_update_decline_install().

While applying an update, the library calls the swu_target_interface_t functions

(to drive the update process) and the swu_update_notifications_t functions

(to report update progress). The actions done by your application within any of these

callbacks depend on your update policy, but you must report the outcomes of update

operations when appropriate by calling the functions in UpdateTargetInterface.h

(e.g., swu_target_install_successful(), swu_target_install_failed()).

If an update installation or verification fails, your application can try to reapply the

update but only as many times as indicated by the retry limit given in the configuration

settings. To access these settings, use the functions in ClientConfiguration.h.

When you're finished using the SWU library, you must call swu_client_uninitialize()

to release its memory.

142 © 2014, QNX Software Systems Limited

Software Updates

ClientConfiguration.h

The ClientConfiguration.h header file defines functions for reading and writing

software update configuration settings.

These functions manage the following settings:

• Flag setting for enabling or disabling local updates

• Default grace period for installing updates

• Maximum number of retries allowed for a software update

Functions in ClientConfiguration.h
Functions defined in ClientConfiguration.h for retrieving the ID of the

UpdateClient and for getting and setting the status of local software updates, the

default grace period for installing updates, and the maximum number of retries allowed

per update.

swu_client_configuration_disable_local_updates()
Disable local software updates for the UpdateClient

Synopsis:

#include <swu/ClientConfiguration.h>

swu_result_t swu_client_configuration_disable_local_updates(
 void)

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Disable local software updates for the UpdateClient. Local software updates are

updates whose information is read off USB or flash devices. Note that the flag set by

this function doesn't affect how the library operates. Instead, the flag is intended to

let library users inform other processes or modules of the state of local updates.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

© 2014, QNX Software Systems Limited 143

Software update core library

SWU_RESULT_ERROR

Another error occurred.

swu_client_configuration_enable_local_updates()
Enable local software updates for the UpdateClient

Synopsis:

#include <swu/ClientConfiguration.h>

swu_result_t swu_client_configuration_enable_local_updates(
 void)

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Enable local software updates for the UpdateClient. Local software updates are

updates whose information is read off USB or flash devices. Note that the flag set by

this function doesn't affect how the library operates. Instead, the flag is intended to

let library users inform other processes or modules of the state of local updates.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_configuration_get_id()
Get the unique ID of the UpdateClient

Synopsis:

#include <swu/ClientConfiguration.h>

swu_result_t swu_client_configuration_get_id(
 swu_client_id_t *id)

144 © 2014, QNX Software Systems Limited

Software Updates

Arguments:

id

On output, the client ID.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the unique ID of the UpdateClient. The UpdateClient is identified by a

unique ID set by the library during initialization. Currently, the library doesn't use this

ID internally. However, the ID could be included to distinguish the client from other

clients when it reports installation details to a server.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument (e.g., a bad pointer) was given.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_configuration_get_local_updates_enabled()
Determine whether local software updates are enabled

Synopsis:

#include <swu/ClientConfiguration.h>

swu_result_t swu_client_configuration_get_local_updates_enabled(

 bool *enabled)

Arguments:

© 2014, QNX Software Systems Limited 145

Software update core library

enabled

On output, true if local updates are enabled and false if they're disabled.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Determine whether local software updates are enabled for the UpdateClient. Local

software updates are updates whose information is read off USB or flash devices.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument (e.g., a bad pointer) was given.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_configuration_get_max_update_retries()
Get the maximum number of retries allowed per software update

Synopsis:

#include <swu/ClientConfiguration.h>

swu_result_t swu_client_configuration_get_max_update_retries(
 uint8_t *max_retries)

Arguments:

max_retries

On output, the maximum number of retries allowed for an update.

146 © 2014, QNX Software Systems Limited

Software Updates

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the maximum number of retries allowed per software update. If an Update object

fails to install an update on its target, the Update will retry the installation until either

it succeeds or has attempted the installation as many times as specified by this

configuration setting. Note that the library currently doesn't use the retry value in the

installation process.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument (e.g., a bad pointer) was given.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_configuration_get_update_grace_period()
Get the default grace period for accepting software updates

Synopsis:

#include <swu/ClientConfiguration.h>

swu_result_t swu_client_configuration_get_update_grace_period(

 swu_timestamp_t *period)

Arguments:

period

On output, the grace period (in seconds).

© 2014, QNX Software Systems Limited 147

Software update core library

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the default grace period for accepting software updates. This default setting applies

to any Update that didn't have its own grace period defined when it was created. To

learn the grace period for an individual Update, call swu_update_get_grace_period()

(p. 179).

In this release, the grace period has no impact on how the SWU library handles

updates. The grace period is just kept as metadata describing an update

(because this value can be set in the manifest file).

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument (e.g., a bad pointer) was given.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_configuration_set_max_update_retries()
Set the maximum number of retries allowed per software update

Synopsis:

#include <swu/ClientConfiguration.h>

swu_result_t swu_client_configuration_set_max_update_retries(

 uint8_t max_retries)

Arguments:

max_retries

148 © 2014, QNX Software Systems Limited

Software Updates

Maximum number of retries allowed for an update.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Set the maximum number of retries allowed per software update. If an Update object

fails to install an update on its target, the Update can retry the installation as many

times as specified by this configuration setting. Note that the library currently doesn't

use the retry value in the installation process.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_configuration_set_update_grace_period()
Set the default grace period for accepting software updates

Synopsis:

#include <swu/ClientConfiguration.h>

swu_result_t swu_client_configuration_set_update_grace_period(

 swu_timestamp_t period)

Arguments:

period

Grace period (in seconds).

Library:

libswu-core

© 2014, QNX Software Systems Limited 149

Software update core library

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Set the default grace period for accepting software updates. This new default setting

will override any grace period defined in the manifest file as well as the library's own

default value of seven days. The new setting will apply to any Update that doesn't

have its own grace period defined when it's created. To learn the grace period for an

individual Update, call swu_update_get_grace_period() (p. 179).

In this release, the grace period has no impact on how the SWU library handles

updates. The grace period is just kept as metadata describing an update

(because this value can be set in the manifest file).

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

Common.h

The Common.h header file defines constants, enumerations, data types, and functions

used by all modules in the SWU library API.

This module exposes the following useful features:

• Constants for field length limits and invalid values

• Enumerations to represent update states and outcomes of API calls and of update

installations

• Data structures for holding information about update targets and installation failures

• Utility functions for reference counting of library objects and for converting

enumerated constants to strings

150 © 2014, QNX Software Systems Limited

Software Updates

Constants in Common.h
Constants defined in Common.h to specify maximum lengths for UpdateTarget fields,

represent invalid field values, and refer to all update states.

Definitions in Common.h
Preprocessor macro definitions in Common.h

Definitions:

#define SWU_UPDATE_TARGET_VENDOR_ID_LEN 100

Maximum length of the vendor ID on an UpdateTarget (not including the

null-terminator).

#define SWU_UPDATE_TARGET_HARDWARE_ID_LEN 100

Maximum length of the hardware ID on an UpdateTarget (not including the

null-terminator).

#define SWU_UPDATE_TARGET_SERIAL_NUM_LEN 100

Maximum length of a serial number on an UpdateTarget (not including the

null-terminator).

#define SWU_UPDATE_TARGET_BOM_VERSION_LEN 100

Maximum length of the software version of an UpdateTarget (not including the

null-terminator).

#define SWU_INVALID_TARGET_ID ((swu_target_id_t)0)

Represents an invalid value for an swu_target_id_t.

#define SWU_INVALID_GRACE_PERIOD ((swu_timestamp_t) INT64_MAX)

Represents an invalid grace period value.

#define SWU_INVALID_MANIFEST_ID ((swu_manifest_id_t)0)

Represents an invalid manifest ID.

#define SWU_UPDATE_ALL_STATES \
 (SWU_UPDATE_STATE_NEW | \
 SWU_UPDATE_STATE_VERIFYING | \
 SWU_UPDATE_STATE_VERIFIED | \
 SWU_UPDATE_STATE_INSTALLING | \
 SWU_UPDATE_STATE_INSTALL_COMPLETED | \
 SWU_UPDATE_STATE_INSTALL_FAILED | \
 SWU_UPDATE_STATE_INSTALL_CANCELLING | \
 SWU_UPDATE_STATE_INSTALL_CANCELLED | \
 SWU_UPDATE_STATE_INSTALL_VERIFYING | \
 SWU_UPDATE_STATE_INSTALL_VERIFIED | \
 SWU_UPDATE_STATE_ROLLING_BACK | \
 SWU_UPDATE_STATE_ROLLBACK_COMPLETED | \
 SWU_UPDATE_STATE_ROLLBACK_FAILED | \
 SWU_UPDATE_STATE_ERROR | \
 SWU_UPDATE_STATE_DECLINED)

© 2014, QNX Software Systems Limited 151

Software update core library

Represents all possible Update states. This constant is useful for setting a notification

for all states.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Enumerations in Common.h
Enumerations defined in Common.h to represent result codes of API calls, reasons

for update failures, states and priorities of updates, and levels of logging.

swu_failure_reason_t
Possible failure reasons for update installations

Synopsis:

#include <swu/Common.h>

typedef enum {
 SWU_FAILURE_REASON_UPDATE_NOT_SUPPORTED,
 SWU_FAILURE_REASON_NOT_READY_FOR_UPDATE,
 SWU_FAILURE_REASON_INVALID_CONDITIONS,
 SWU_FAILURE_REASON_INSTALL_FAILED,
 SWU_FAILURE_REASON_INSTALL_VERIFICATION_FAILED
} swu_failure_reason_t;

Data:

SWU_FAILURE_REASON_UPDATE_NOT_SUPPORTED

The target system doesn't support updates.

SWU_FAILURE_REASON_NOT_READY_FOR_UPDATE

The target system isn't ready for updates.

SWU_FAILURE_REASON_INVALID_CONDITIONS

The target system couldn't install the update (e.g., because a bad base

version of the software was specified).

SWU_FAILURE_REASON_INSTALL_FAILED

A failure occurred during the update installation.

SWU_FAILURE_REASON_INSTALL_VERIFICATION_FAILED

A failure occured during the verification of the update installation.

Library:

libswu-core

152 © 2014, QNX Software Systems Limited

Software Updates

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_failure_reason_t enumeration defines the possible reasons that an update

installation can fail.

swu_result_t
Possible outcomes for an API call

Synopsis:

#include <swu/Common.h>

typedef enum {
 SWU_RESULT_SUCCESS,
 SWU_RESULT_ERROR,
 SWU_RESULT_EMPTY,
 SWU_RESULT_DUPLICATE_ENTRY,
 SWU_RESULT_NOT_FOUND,
 SWU_RESULT_INVALID_ARGUMENT,
 SWU_RESULT_OUT_OF_MEMORY,
 SWU_RESULT_API_NOT_AVAILABLE,
 SWU_RESULT_UPDATE_TARGET_BUSY,
 SWU_RESULT_NOT_INITIALIZED,
 SWU_RESULT_CONDITIONS_NOT_VALID_TO_INSTALL
} swu_result_t;

Data:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_ERROR

An unknown error ocurred (or the error doesn't fit into the other categories).

SWU_RESULT_EMPTY

The library couldn't find the information needed for the update.

SWU_RESULT_DUPLICATE_ENTRY

A library object with the same identifier values given in the arguments has

already been registered.

SWU_RESULT_NOT_FOUND

A library object or callback structure referenced in the arguments couldn't

be found (e.g., because an invalid ID was specified).

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

© 2014, QNX Software Systems Limited 153

Software update core library

SWU_RESULT_OUT_OF_MEMORY

The system ran out of memory.

SWU_RESULT_API_NOT_AVAILABLE

The library doesn't support this operation.

SWU_RESULT_UPDATE_TARGET_BUSY

The target is busy and can't start an update installation or verification.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_CONDITIONS_NOT_VALID_TO_INSTALL

The target system currently can't perform update installations.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_result_t enumeration defines the codes indicating if an API call succeeded

or if not, the reason it failed. Most functions in the SWU library API return an

swu_result_t to indicate the success or failure of the call. Typically, the caller simply

checks whether the call returned SWU_RESULT_SUCCESS. The failure result codes

are useful for logging and for debugging.

The swu_result_to_string() (p. 166) function returns the string representation of an

swu_result_t code, which is helpful for logging.

swu_update_priority_t
Possible priority levels for a software update

Synopsis:

#include <swu/Common.h>

typedef enum {
 SWU_UPDATE_PRIORITY_CRITICAL = 1,
 SWU_UPDATE_PRIORITY_NORMAL = 10,
 SWU_UPDATE_PRIORITY_USEFUL = 20
} swu_update_priority_t;

Data:

SWU_UPDATE_PRIORITY_CRITICAL

154 © 2014, QNX Software Systems Limited

Software Updates

Highest priority level.

SWU_UPDATE_PRIORITY_NORMAL

Default priority level.

SWU_UPDATE_PRIORITY_USEFUL

Lowest priority level.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_priority_t enumeration defines possible priority levels for a

software update.

swu_update_state_t
Possible states of a software update

Synopsis:

#include <swu/Common.h>

typedef enum {
 SWU_UPDATE_STATE_NEW = 0x00000001,
 SWU_UPDATE_STATE_VERIFYING = 0x00000080,
 SWU_UPDATE_STATE_VERIFIED = 0x00000100,
 SWU_UPDATE_STATE_INSTALLING = 0x00000200,
 SWU_UPDATE_STATE_INSTALL_COMPLETED = 0x00000400,
 SWU_UPDATE_STATE_INSTALL_FAILED = 0x00000800,
 SWU_UPDATE_STATE_INSTALL_CANCELLING = 0x00001000,
 SWU_UPDATE_STATE_INSTALL_CANCELLED = 0x00002000,
 SWU_UPDATE_STATE_INSTALL_VERIFYING = 0x00004000,
 SWU_UPDATE_STATE_INSTALL_VERIFIED = 0x00008000,
 SWU_UPDATE_STATE_ROLLING_BACK = 0x00010000,
 SWU_UPDATE_STATE_ROLLBACK_COMPLETED = 0x00020000,
 SWU_UPDATE_STATE_ROLLBACK_FAILED = 0x00040000,
 SWU_UPDATE_STATE_ERROR = 0x00080000,
 SWU_UPDATE_STATE_DECLINED = 0x00100000
} swu_update_state_t;

Data:

SWU_UPDATE_STATE_NEW

The Update object has been created.

SWU_UPDATE_STATE_VERIFYING

The update is being verified.

© 2014, QNX Software Systems Limited 155

Software update core library

SWU_UPDATE_STATE_VERIFIED

The update has passed internal verification.

SWU_UPDATE_STATE_INSTALLING

The user accepted the update and the system has started installing it.

SWU_UPDATE_STATE_INSTALL_COMPLETED

The update installation successfully completed.

SWU_UPDATE_STATE_INSTALL_FAILED

The update installation or the verification of the installation failed.

SWU_UPDATE_STATE_INSTALL_CANCELLING

The update is being cancelled by the user. This state is currently unused.

SWU_UPDATE_STATE_INSTALL_CANCELLED

The update was cancelled by the user. This state is currently unused.

SWU_UPDATE_STATE_INSTALL_VERIFYING

The UpdateTarget is verifying an update after successfully installing it.

SWU_UPDATE_STATE_INSTALL_VERIFIED

The update installation was successfully verified.

SWU_UPDATE_STATE_ROLLING_BACK

The update is being rolled back by the user. This state is currently unused.

SWU_UPDATE_STATE_ROLLBACK_COMPLETED

The update was rolled back by the user. This state is currently unused.

SWU_UPDATE_STATE_ROLLBACK_FAILED

The update rollback failed. This state is currently unused.

SWU_UPDATE_STATE_ERROR

An unexpected error occurred.

SWU_UPDATE_STATE_DECLINED

The user didn't accept the update.

Library:

libswu-core

156 © 2014, QNX Software Systems Limited

Software Updates

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_state_t enumeration defines the possible states of a software update.

These enumeration constants are defined in a way that allows one or many constants

to be used in a bitmask when defining notifications.

The swu_update_state_to_string() (p. 167) function returns the string representation

of an swu_update_state_t code, which is helpful for logging.

swu_log_level_t
Severity levels for messages logged with swu_logging_callback_t function

Synopsis:

#include <swu/Common.h>

typedef enum swu_log_level {
 SWU_LOG_SHUTDOWN,
 SWU_LOG_CRITICAL,
 SWU_LOG_ERROR,
 SWU_LOG_WARNING,
 SWU_LOG_NOTICE,
 SWU_LOG_INFO
} swu_log_level_t;

Data:

SWU_LOG_SHUTDOWN

A critical error has occurred and the system must be shut down. This value

is currently unused.

SWU_LOG_CRITICAL

A critical error has occured and the library must be shut down. This value

is currently unused.

SWU_LOG_ERROR

A serious error has occurred, preventing the library from completing the

update process.

SWU_LOG_WARNING

An issue has been found by the library but it can continue with the update

process.

SWU_LOG_NOTICE

The library is reporting a significant event related to the update process.

© 2014, QNX Software Systems Limited 157

Software update core library

SWU_LOG_INFO

The library is reporting information on the update process.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_log_level_t enumeration specifies the possible severity levels for messages

logged with the swu_logging_callback_t (p. 200) function.

Data types in Common.h
Data types defined in Common.h for storing IDs and handles of library objects and

for representing timestamps, strings, and UpdateTarget information.

swu_client_id_t
Unique ID of an UpdateClient

Synopsis:

#include <swu/Common.h>

typedef swu_string_t swu_client_id_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_client_id_t data type stores the unique ID of an UpdateClient.

swu_failure_code_t
Customer-specific code indicating why an installation failed

Synopsis:

#include <swu/Common.h>

typedef uint32_t swu_failure_code_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

158 © 2014, QNX Software Systems Limited

Software Updates

Description:

The swu_failure_code_t data type stores a customer-specific code indicating

why an installation failed.

swu_failure_info_t
Describes the failure experienced by an UpdateTarget

Synopsis:

typedef struct {
 swu_failure_reason_t reason;
 swu_failure_code_t code;
} swu_failure_info_t;

Data:

swu_failure_reason_t reason

An swu_failure_reason_t constant indicating the type of failure.

swu_failure_code_t code

A customer-specific code providing more details about the failure.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_failure_info_t structure describes the failure experienced by an

UpdateTarget. The structure stores an swu_failure_reason_t (p. 152) constant,

which specifies a library-defined failure category, as well as an swu_failure_code_t

(p. 158), which contains a customer-specific failure code.

swu_manifest_id_t
Unique ID of a manifest successfully parsed by library

Synopsis:

#include <swu/Common.h>

typedef uint32_t swu_manifest_id_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

© 2014, QNX Software Systems Limited 159

Software update core library

Description:

The swu_manifest_id_t data type stores the unique ID of a manifest successfully

parsed by the library.

swu_progress_t
Percentage-based progress indicator

Synopsis:

#include <swu/Common.h>

typedef uint8_t swu_progress_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_progress_t data type represents operation progress as an integer between

0 and 100 that indicates percentage of completion. Operations that can be measured

this way include update installations and verifications.

swu_string_t
Reference-counted string stored in library

Synopsis:

#include <swu/Common.h>

typedef char* swu_string_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_string_t data type represents a referenced-counted string stored in the

library. When working with an swu_string_t returned by an API call, you must call

swu_object_retain() (p. 165) (unless otherwise noted) to increase the reference count

and maintain access to the string variable. Any string that has its reference count

increased this way must be released later with swu_object_release() (p. 165) when no

longer needed.

160 © 2014, QNX Software Systems Limited

Software Updates

swu_target_t
Handle of an UpdateTarget

Synopsis:

#include <swu/Common.h>

typedef void* swu_target_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_target_t data type stores the handle of an UpdateTarget, which is a

type of swu_object. In the SWU library API, UpdateTarget objects are represented

by swu_target_t handles. Because each UpdateTarget object is

reference-counted, you must call swu_object_retain() (p. 165) to increase the reference

count and maintain access to an UpdateTarget. Any swu_target_t that has its

reference count increased this way must be released later with swu_object_release()

(p. 165) when no longer needed.

swu_target_id_t
Unique ID of an UpdateTarget

Synopsis:

#include <swu/Common.h>

typedef uint32_t swu_target_id_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_target_id_t data type stores the unique ID of an UpdateTarget. This

ID is unique among all UpdateTarget objects registered with a given

UpdateClient.

The UpdateTarget ID isn't unique across power

cycles.

© 2014, QNX Software Systems Limited 161

Software update core library

swu_target_sw_information_t
Stores information about an UpdateTarget

Synopsis:

typedef struct {
 size_t size;
 char vendor_id[SWU_UPDATE_TARGET_VENDOR_ID_LEN + 1];
 char hardware_id[SWU_UPDATE_TARGET_HARDWARE_ID_LEN + 1];
 char serial_number[SWU_UPDATE_TARGET_SERIAL_NUM_LEN + 1];
 char bom_version[SWU_UPDATE_TARGET_BOM_VERSION_LEN + 1];
} swu_target_sw_information_t;

Data:

size_t size

Size of the structure. This field should be set by calling sizeof(swu_tar

get_sw_information_t) before using the structure in an SWU library

API call.

char vendor_id[SWU_UPDATE_TARGET_VENDOR_ID_LEN + 1]

Vendor ID, used with the value in hardware_id to uniquely identify the

UpdateTarget when it's matched with an Update.

char hardware_id[SWU_UPDATE_TARGET_HARDWARE_ID_LEN + 1]

Hardware ID, used with the value in vendor_id to uniquely identify the

UpdateTarget when it's matched with an Update.

char serial_number[SWU_UPDATE_TARGET_SERIAL_NUM_LEN + 1]

Serial number of the UpdateTarget. The library integrator can decide how

to use this field.

char bom_version[SWU_UPDATE_TARGET_BOM_VERSION_LEN + 1]

Version of the UpdateTarget. The library integrator can decide how to use

this field.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_target_sw_information_t structure stores information describing the

software update contained in an UpdateTarget. The vendor_id and hardware_id

162 © 2014, QNX Software Systems Limited

Software Updates

fields identify the UpdateTarget that an Update is meant for, so the combination

of values in these fields must be unique among all UpdateTarget objects registered

with the library.

swu_timestamp_t
UNIX timestamp

Synopsis:

#include <swu/Common.h>

typedef int64_t swu_timestamp_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_timestamp_t data type stores a UNIX timestamp, which indicates the

number of seconds since the start of 1970 (i.e., 1/1/1970 UTC).

swu_update_t
Handle of an Update

Synopsis:

#include <swu/Common.h>

typedef void* swu_update_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_t data type stores the handle of an Update, which is a type of

swu_object. In the SWU library API, Update objects are represented by

swu_update_t handles. Because each Update object is reference-counted, you

must call swu_object_retain() (p. 165) to increase the reference count and maintain

access to an Update. Any swu_update_t that has its reference count increased

this way must be released later with swu_object_release() (p. 165) when no longer

needed.

© 2014, QNX Software Systems Limited 163

Software update core library

swu_update_id_t
Unique ID of an Update

Synopsis:

#include <swu/Common.h>

typedef swu_string_t swu_update_id_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_id_t data type stores the unique ID of an Update. This ID is

unique among all Update objects.

swu_update_list_t
Handle of an UpdateList

Synopsis:

#include <swu/Common.h>

typedef void* swu_update_list_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_list_t data type stores a handle to an UpdateList, which

represents a list of Update objects.

swu_uri_t
Standard URI string

Synopsis:

#include <swu/Common.h>

typedef swu_string_t swu_uri_t;

Library:

libswu-core

164 © 2014, QNX Software Systems Limited

Software Updates

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_uri_t data type represents a standard URI string.

Functions in Common.h
Functions defined in Common.h for adjusting object reference counts and for returning

string versions of enumerated constants.

swu_object_release()
Release an swu_object previously returned by another API call

Synopsis:

#include <swu/Common.h>

void swu_object_release(void *object)

Arguments:

object

An swu_object returned from an earlier API call.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Release an swu_object previously returned by another API call. This function

decrements the reference counts of objects returned in calls to the SWU library API.

Such objects include swu_string_t, swu_update_t, swu_target_t, and others.

To maintain access to an swu-core object, you must call swu_object_retain() (p. 165)

to increase the object's reference count. Any object that has its reference count

increased this way must be released later with swu_object_release() when no longer

needed.

swu_object_retain()
Retain an swu_object previously returned by another API call

Synopsis:

#include <swu/Common.h>

void swu_object_retain(void *object)

© 2014, QNX Software Systems Limited 165

Software update core library

Arguments:

object

An swu_object returned from an earlier API call.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Retain an swu_object previously returned by another API call. This function increments

the reference counts of objects returned in calls to the SWU library API. Such objects

include swu_string_t, swu_update_t, swu_target_t, and others.

You must call this function to increase an object's reference count if you want to

maintain access to that object. Any object that has its reference count increased this

way must be released later with swu_object_release() (p. 165) when no longer needed.

swu_result_to_string()
Return a string representation of an swu_result_t constant

Synopsis:

#include <swu/Common.h>

const char* swu_result_to_string(swu_result_t result)

Arguments:

result

The swu_result_t code whose string representation is requested by the caller.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Return a null-terminated string representation of the specified swu_result_t (p. 153)

enumeration constant. This constant refers to one of many possible outcomes from

an API call.

166 © 2014, QNX Software Systems Limited

Software Updates

Returns:

A string version of the specified API call outcome.

swu_update_state_to_string()
Return a string representation of an swu_update_state_t constant

Synopsis:

#include <swu/Common.h>

const char* swu_update_state_to_string(
 swu_update_state_t state)

Arguments:

state

The swu_update_state_t code whose string representation is requested by

the caller.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Return a null-terminated string representation of the specified swu_update_state_t

(p. 155) enumeration constant. This constant refers to one of many possible states for

a software update.

Returns:

A string version of the specified update state.

Update.h

The Update.h header file defines data types for storing update notification callbacks

and update state bitmasks and defines functions for registering those callbacks, reading

update information and progress, and accepting or declining updates.

The swu_update_notifications_t structure stores callback functions for handling

update state changes and progress reports. The functions exposed in the same header

file allow you to:

• Register and unregister a set of notification callbacks for a specific update

• Read the ID, name, target software version, and other information fields from an

update

• Accept, defer, or decline updates

© 2014, QNX Software Systems Limited 167

Software update core library

• Retrieve an update's installation and verification progress and failure information

(if present)

Data types in Update.h
Data types defined in Update.h for specifying update state masks related to

notifications and for assigning notification callback functions and data pointers to

pass to these functions.

swu_update_notifications_t
Structure containing notification callbacks and their context pointers

Synopsis:

typedef struct {

 void (*progress)
 (swu_update_t update,
 swu_progress_t percent,
 void *progress_context);

 void *progress_context;

 void (*state_changed)
 (swu_update_t update,
 swu_update_state_t state,
 void *state_changed_context);

 swu_update_state_mask_t state_mask;

 void *state_changed_context;

} swu_update_notifications_t;

Data:

void (*progress) (swu_update_t update, swu_progress_t percent, void *progress_context)

Callback function for processing notifications of progress in the update

installation or verification.

void *progress_context

Pointer to user-supplied data that will be passed to the progress function.

void (*state_changed) (swu_update_t update, swu_update_state_t state, void *state_changed_context

)

Callback function for processing notifications of update state changes.

The state_changed function is called for the first time when the notifications

structure is registered in a call to swu_update_register_notifications() (p.

195).

swu_update_state_mask_t state_mask

168 © 2014, QNX Software Systems Limited

Software Updates

Mask specifying which update states to be notified of when the update

transitions to one of those states.

void *state_changed_context

Pointer to user-supplied data that will be passed to the state_changed

function.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_notifications_t structure defines the notification callbacks

for handling progress updates or update state changes as well as the context pointers

to pass to those callbacks. Setting a notification callback pointer to NULL prevents

that notification from being sent. Setting a context pointer to NULL means no

user-supplied data will be passed to the corresponding callback function.

You must register the callbacks specified in the swu_update_notification_t

structure by calling swu_update_register_notifications() (p. 195), to ensure they will

run in response to progress updates or update state changes. When you no longer need

to run the callbacks, you should unregister them by calling

swu_update_unregister_notifications() (p. 197).

swu_update_state_mask_t
Mask for selecting update states for which to send notifications

Synopsis:

#include <swu/Update.h>

typedef swu_update_state_t swu_update_state_mask_t;

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_state_mask_t data type stores a mask that specifies the exact

set of update states for which notifications will be sent. You can assign one or many

swu_update_t (p. 155) constants to the mask to request notifications when an Update

transitions into one of the corresponding states.

© 2014, QNX Software Systems Limited 169

Software update core library

Functions in Update.h
Functions defined in Update.h for retrieving information about update configurations

and targets, checking update progress, registering and unregistering notifications, and

accepting and declining updates.

swu_update_accept_install()
Accept the installation of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_accept_install(
 swu_update_t update)

Arguments:

update

Handle of the Update.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Accept the installation of the software update referenced in update. If the library

successfully processes this request, the Update state transitions to

SWU_UPDATE_STATE_INSTALLING.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

170 © 2014, QNX Software Systems Limited

Software Updates

swu_update_compare_to_id()
Compare an ID with the ID of an Update

Synopsis:

#include <swu/Update.h>

int32_t swu_update_compare_to_id(
 swu_update_t update,
 swu_update_id_t id)

Arguments:

update

Handle of the Update.

id

ID to compare with the Update ID.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Compare the ID specified in id with the ID of the Update specified in update. This

function is useful when searching the UpdateList for a specific Update or in any

other case where simply comparing swu_update_t handles is inadequate.

Returns:

A signed integer value indicating how the IDs compare:

>0

The specified ID is greater than the ID of the Update.

0

The specified ID equals the ID of the Update.

<0

The specified ID is less than the ID of the Update.

© 2014, QNX Software Systems Limited 171

Software update core library

swu_update_decline_install()
Decline the installation of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_decline_install(
 swu_update_t update)

Arguments:

update

Handle of the Update.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Decline the installation of the software update referenced in update (if the update

allows it). If the library successfully processes this request, the Update state transitions

to SWU_UPDATE_STATE_DECLINED.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

swu_update_defer_install()
Defer the installation of a software update for a specified amount of time

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_defer_install(
 swu_update_t update,

172 © 2014, QNX Software Systems Limited

Software Updates

 swu_timestamp_t defer_period
)

Arguments:

update

Handle of the Update.

defer_period

Time period, in seconds, to defer the update installation.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Defer the installation of the software update referenced in update (if the update allows

it). This function defers the update for the amount of time specified in defer_period.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

swu_update_get_base_version()
Get the base version of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_base_version(
 swu_update_t update,
 swu_string_t *version)

Arguments:

© 2014, QNX Software Systems Limited 173

Software update core library

update

Handle of the Update.

version

Pointer to the string to store the version.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the base version of the software update referenced in update. This function retrieves

the base version specified when the Update was created and stores it in version. Note

that the version can't be changed after the Update has been created. An

UpdateTarget should call this function to validate its update before attempting to

install it.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_can_be_declined()
Get flag indicating whether an update can be declined

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_can_be_declined(
 swu_update_t update,
 bool *can_be_declined)

Arguments:

update

Handle of the Update.

174 © 2014, QNX Software Systems Limited

Software Updates

can_be_declined

Pointer to a Boolean to store whether the update can be declined.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the flag indicating whether the HMI allows the user to decline installation of the

software update specified in update. This function stores the flag setting in

can_be_declined. This flag was set when the Update object was created and can't

be changed afterwards.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_can_be_deferred()
Get flag indicating whether an update can be deferred

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_can_be_deferred(
 swu_update_t update,
 bool *can_be_deferred)

Arguments:

update

Handle of the Update.

can_be_deferred

Pointer to a Boolean to store whether the update can be deferred.

© 2014, QNX Software Systems Limited 175

Software update core library

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the flag indicating whether the HMI allows the user to defer installation of the

software update specified in update. This function stores the flag setting in

can_be_deferred. This flag was set when the Update object was created and can't be

changed afterwards.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_defer_period()
Get the maximum deferral period for accepting a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_defer_period(
 swu_update_t update,
 swu_timestamp_t *period)

Arguments:

update

Handle of the Update.

period

Pointer to the swu_timestamp_t to store the deferral period.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

176 © 2014, QNX Software Systems Limited

Software Updates

Description:

Get the maximum deferral period for accepting the software update specified in update.

This function retrieves the deferral period specified when the Update was created

and stores it in period. Note that the deferral period can't be changed after the Update

has been created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_description()
Get the full description of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_description(
 swu_update_t update,
 swu_string_t *description)

Arguments:

update

Handle of the Update.

description

Pointer to the string to store the long description.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the full description of the software update referenced in update. This function

retrieves the long description specified when the Update was created and stores it

in description. Note that the long description can't be changed after the Update has

been created.

© 2014, QNX Software Systems Limited 177

Software update core library

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_failure_info()
Get failure information for an update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_failure_info(
 swu_update_t update,
 swu_failure_info_t *info)

Arguments:

update

Handle of the Update.

info

Pointer to the swu_failure_info_t to store the latest failure information

for the update. The library fills in the fields in this structure.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the latest failure information for the software update referenced in update. This

function stores this information in the structure referred to by info. The failure

information fields aren't filled in until the Update is in the

SWU_UPDATE_STATE_INSTALL_FAILED state.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

178 © 2014, QNX Software Systems Limited

Software Updates

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

swu_update_get_grace_period()
Get the grace period for accepting a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_grace_period(
 swu_update_t update,
 swu_timestamp_t *period)

Arguments:

update

Handle of the Update.

period

Pointer to the swu_timestamp_t to store the version.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the grace period for accepting the software update referenced in update. This

function retrieves the grace period specified when the Update was created and stores

it in period. Note that the grace period can't be changed after the Update has been

created.

If you didn't set a grace period for this specific Update, the default value will be

used. The library defines a default grace period of seven days, but this can be

overridden in the manifest file. Furthermore, you can call

swu_client_configuration_set_update_grace_period() (p. 149) to change the default

grace period after the library is initialized. The value specified with this client

configuration function will then become the default for all updates, overriding any

value set by the library or manifest file.

© 2014, QNX Software Systems Limited 179

Software update core library

In this release, the grace period has no impact on how the SWU library handles

updates. The grace period is just kept as metadata describing an update

(because this value can be set in the manifest file).

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_id()
Get the unique identifier of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_id(
 swu_update_t update,
 swu_update_id_t *id)

Arguments:

update

Handle of the Update.

id

Pointer to the swu_update_id_t to store the ID.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the unique identifier of the software update referenced in update. This function

retrieves the unique ID assigned when the Update was created and stores it in id.

The ID never changes during the same power cycle but can change across power

cycles.

180 © 2014, QNX Software Systems Limited

Software Updates

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_install_source_location()
Get the location from which a software update will be installed

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_install_source_location(
 swu_update_t update,
 swu_uri_t *location)

Arguments:

update

Handle of the Update.

location

Pointer to the swu_uri_t to store the location (i.e., software update path).

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the location from which the software update referenced in update will be installed.

This function retrieves the software update path specified when the Update was

created and stores it in location. Note that the path can't be changed after the Update

has been created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

© 2014, QNX Software Systems Limited 181

Software update core library

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_install_percent_completed()
Get the percentage of the installation completed for an update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_install_percent_completed(
 swu_update_t update,
 swu_progress_t *percent_completed)

Arguments:

update

Handle of the Update.

percent_completed

Pointer to the swu_progress_t to store the percentage of the update

currently installed.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the percentage of the installation completed for the software update referenced

in update. This function stores this percentage in percent_completed. Note that when

the Update isn't in the SWU_UPDATE_STATE_INSTALLING state, the value retrieved

by this function is undetermined.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

182 © 2014, QNX Software Systems Limited

Software Updates

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

swu_update_get_manifest_id()
Get the manifest ID associated with an update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_manifest_id(
 swu_update_t update,
 swu_manifest_id_t *manifest_id)

Arguments:

update

Handle of the Update.

manifest_id

Pointer to the swu_manifest_id_t to store the manifest ID.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the manifest ID associated with the Update specified in update. This function

stores this ID in manifest_id. You can then read this field to determine which manifest

was used to create the Update.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

© 2014, QNX Software Systems Limited 183

Software update core library

swu_update_get_name()
Get the name of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_name(
 swu_update_t update,
 swu_string_t *name)

Arguments:

update

Handle of the Update.

name

Pointer to the string to store the name.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the name of the software update referenced in update. This function retrieves the

name specified when the Update was created and stores it in name. Note that the

name can't be changed after the Update has been created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_post_install_command()
Get the post-installation command for an update

Synopsis:

#include <swu/Update.h>

184 © 2014, QNX Software Systems Limited

Software Updates

swu_result_t swu_update_get_post_install_command(
 swu_update_t update,
 swu_string_t *command)

Arguments:

update

Handle of the Update.

command

Pointer to the string to store the command that the UpdateTarget is meant

to run after installing the update.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the post-installation command for the software update referenced in update. This

command is meant to be run by the UpdateTarget after it has installed the update.

The function stores this command in command. If no such command was provided in

the manifest file, the function returns SWU_RESULT_SUCCESS but stores an empty

string in command.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_priority()
Get the priority of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_priority(
 swu_update_t update,
 swu_update_priority_t *priority)

© 2014, QNX Software Systems Limited 185

Software update core library

Arguments:

update

Handle of the Update.

priority

Pointer to the swu_update_priority_t to store the priority.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the priority of the software update referenced in update. This function retrieves

the priority specified when the Update was created and stores it in priority. Note that

the priority can't be changed after the Update has been created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_pre_install_command()
Get the pre-installation command for an update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_pre_install_command(
 swu_update_t update,
 swu_string_t *command)

Arguments:

update

Handle of the Update.

command

186 © 2014, QNX Software Systems Limited

Software Updates

Pointer to the string to store the command that the UpdateTarget is meant

to run before installing the update (i.e., during the update preparation phase).

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the pre-installation command for the software update referenced in update. This

command is meant to be run by the UpdateTarget before it installs the update,

while it prepares for installation. The function stores this command in command. If

no such command was provided in the manifest file, the function returns

SWU_RESULT_SUCCESS but stores an empty string in command.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_prompt_to_install()
Get flag indicating whether the user should be prompted to install an update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_prompt_to_install(
 swu_update_t update,
 bool *prompt)

Arguments:

update

Handle of the Update.

prompt

Pointer to Boolean to store whether the user should be prompted for this

update.

© 2014, QNX Software Systems Limited 187

Software update core library

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the flag indicating whether the HMI should prompt the user to accept the

installation of the software update referenced in update. This function stores the flag

setting in prompt. This flag was set when the Update object was created and can't

be changed afterwards.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_short_description()
Get the descriptive summary of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_short_description(
 swu_update_t update,
 swu_string_t *description)

Arguments:

update

Handle of the Update.

description

Pointer to the string to store the short description.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

188 © 2014, QNX Software Systems Limited

Software Updates

Description:

Get the descriptive summary of the software update referenced in update. This function

retrieves the short description specified when the Update was created and stores it

in description. Note that this description can't be changed after the Update has been

created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_state()
Get the current state of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_state(
 swu_update_t update,
 swu_update_state_t *state)

Arguments:

update

Handle of the Update.

state

Pointer to the swu_update_state_t to store the state.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the current state of the software update referenced in update. This function stores

the update state in state.

© 2014, QNX Software Systems Limited 189

Software update core library

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_version()
Get the version of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_version(
 swu_update_t update,
 swu_string_t *version)

Arguments:

update

Handle of the Update.

version

Pointer to the string to store the version.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the version of the software update referenced in update. This function retrieves

the version specified when the Update was created and stores it in version. Note that

the version can't be changed after the Update has been created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

190 © 2014, QNX Software Systems Limited

Software Updates

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_release_timestamp()
Get the date and time that a software update was released

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_release_timestamp(
 swu_update_t update,
 swu_timestamp_t *timestamp)

Arguments:

update

Handle of the Update.

timestamp

Pointer to the swu_timestamp_t to store the release timestamp.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the date and time that the software update referenced in update was released.

This function retrieves the release timestamp specified when the Update was created

and stores it in timestamp. Note that the timestamp can't be changed after the Update

has been created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

© 2014, QNX Software Systems Limited 191

Software update core library

swu_update_get_size()
Get the total size, in bytes, of a software update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_size(
 swu_update_t update,
 size_t *size)

Arguments:

update

Handle of the Update.

size

Pointer to the size_t to store the update size.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the total size, in bytes, of the software update referenced in update. This function

retrieves the update size determined when the Update was created and stores it in

size. Note that the size can't be changed after the Update has been created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

swu_update_get_target()
Get the handle of the UpdateTarget that will install a software update

Synopsis:

#include <swu/Update.h>

192 © 2014, QNX Software Systems Limited

Software Updates

swu_result_t swu_update_get_target(
 swu_update_t update,
 swu_target_t *target)

Arguments:

update

Handle of the Update.

target

Pointer to the handle of the associated UpdateTarget.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the handle of the UpdateTarget that will install the software update referenced

in update. This function stores the handle in target. To find the associated

UpdateTarget, the library looks through its list of registered UpdateTarget objects

and finds the one whose hardware ID and vendor ID values match those contained in

the Update. These ID values were specified when the Update was created.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_FOUND

The associated UpdateTarget can't be found.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

© 2014, QNX Software Systems Limited 193

Software update core library

swu_update_get_verification_percent_completed()
Get the percentage of the verification completed for an update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_get_verification_percent_completed(
 swu_update_t update,
 swu_progress_t *percent_completed)

Arguments:

update

Handle of the Update.

percent_completed

Pointer to the swu_progress_t to store the percentage of the update

currently verified.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the percentage of the verification completed for the software update referenced

in update. This function stores this percentage in percent_completed. Note that when

the Update isn't in the SWU_UPDATE_STATE_VERIFYING state, the value retrieved

by this function is undetermined.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

194 © 2014, QNX Software Systems Limited

Software Updates

swu_update_register_notifications()
Register a set of notification callbacks for an update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_register_notifications(
 swu_update_t update,
 const swu_update_notifications_t *notifications)

Arguments:

update

Handle of the Update.

notifications

A pointer to the swu_update_notifications_t structure containing

the notification callbacks to register.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Register a set of notification callbacks for the Update specified in update. After this

function returns SWU_RESULT_SUCCESS, the library calls the callback functions

referred to in notifications whenever the Update state changes or the associated

UpdateTarget reports progress.

The notification data isn't copied, allowing the owner of the notifications to change

the data at runtime, which is the intended design. If this function is called multiple

times with different pointers to notification structures, then multiple notification sets

are registered. If the same pointer is used in different calls to this function, only the

last set of notifications registered will remain registered.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

© 2014, QNX Software Systems Limited 195

Software update core library

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

swu_update_to_string()
Create a string representation of an Update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_to_string(
 swu_update_t update,
 char *output,
 size_t len)

Arguments:

update

Handle of the Update.

output

Buffer to store the outputted string.

len

Length of the buffer.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Create a string representation of the Update specified in update. This function writes

as much information from the Update as possible into a null-terminated string, which

it stores in the buffer pointed to by output. The number of bytes written to the buffer

is at most len. The data is written in fields, with each field on its own line and in the

following format:

ID: UPDATE_ID
Name: This Software Update
Version: 00.00.01

196 © 2014, QNX Software Systems Limited

Software Updates

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

swu_update_unregister_notifications()
Unregister a set of notification callbacks for an update

Synopsis:

#include <swu/Update.h>

swu_result_t swu_update_unregister_notifications(
 swu_update_t update,
 const swu_update_notifications_t *notifications)

Arguments:

update

Handle of the Update.

notifications

A pointer to the swu_update_notifications_t structure containing

the notification callbacks to unregister.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Unregister a set of notification callbacks for the update referenced in update. After

this function returns SWU_RESULT_SUCCESS, the caller can safely release the memory

used by the notifications structure (because the library won't call the callbacks in this

structure anymore).

© 2014, QNX Software Systems Limited 197

Software update core library

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_FOUND

The specified swu_update_notifications_t structure can't be found.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_ERROR

Another error occurred.

UpdateClient.h

The UpdateClient.h header file defines prototypes of functions that interact with

SWU library objects and specifies functions that set up the library, prepare software

updates, and manage change notifications related to library objects.

You can use the functions exposed by this module to:

• Initialize the swu-core library

• Create Update objects based on the contents of an update package

• Register and unregister listeners for changes to UpdateList or TargetList

objects

• Iterate through these lists and assign callbacks to handle changes in their contents

• Log messages to sloginfo

Data types in UpdateClient.h
Data types defined in UpdateClient.h for specifying prototypes of callback functions

that iterate through lists, log messages, and handle change notifications from lists.

swu_client_target_iterator_t
Callback function for iterating through the UpdateTarget list

Synopsis:

#include <swu/UpdateClient.h>

typedef bool(*swu_client_target_iterator_t)
 (swu_target_t target, void *context);

Arguments:

target

198 © 2014, QNX Software Systems Limited

Software Updates

Handle of an UpdateTarget object. When NULL, it indicates the end of

the list.

context

A pointer set by the call to swu_client_iterate_targets().

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_client_target_iterator_t data type defines the prototype for a callback function

that iterates over the contents of the UpdateTarget list. When

swu_client_iterate_targets() (p. 207) is called, this callback function gets called for

each list item and then a final time with a target value of NULL to indicate the end

of the list.

swu_client_target_notification_t
Defines a notification callback for changes to UpdateTarget list

Synopsis:

typedef struct {
 void (*change_notifier)(void *context);
 void *context ;
} swu_client_target_notification_t;

Data:

void (*change_notifier)(void *context)

Callback function that runs in response to changes to the UpdateTarget

list. When this structure is first registered with the library, the callback

function is called to inform the client of the current list contents.

void *context

Context pointer used when the change_notifier function is called.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

© 2014, QNX Software Systems Limited 199

Software update core library

Description:

The swu_client_target_notification_t structure stores the pointer to a

callback function that processes notification changes related to the UpdateTarget

list as well as a context pointer that stores additional information.

swu_logging_callback_t
Callback function to log messages generated by the library

Synopsis:

#include <swu/UpdateClient.h>

typedef void(*swu_logging_callback_t)
 (swu_log_level_t level,
 const char *message,
 va_list msg_args);

Arguments:

level

Severity level of the message.

message

A null-terminated string containing the message to log.

msg_args

Variable argument list for formatting values within the message text.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_logging_callback_t data type defines the prototype for a callback function

that must be registered with swu_client_set_logging_callback() to receive log messages

from the library. These messages may be errors, warnings, or debugging information.

The callback function can set the level parameter to filter the messages by severity.

swu_update_list_iterator_t
Callback function for iterating through an UpdateList

Synopsis:

#include <swu/UpdateClient.h>

200 © 2014, QNX Software Systems Limited

Software Updates

typedef bool(*swu_update_list_iterator_t)
 (swu_update_t update, void *context);

Arguments:

update

Handle of the current Update object in the list. When NULL, it indicates

the end of the list.

context

A pointer set by the call to swu_update_list_iterate().

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_list_iterator_t data type defines the prototype for a callback function

that iterates over the contents of an UpdateList. When swu_update_list_iterate()

(p. 213) is called, this callback function gets called for each UpdateList item and

then a final time with an update value of NULL to indicate the end of the list.

swu_update_list_notification_t
Defines a notification callback for changes to an UpdateList

Synopsis:

typedef struct {
 void (*change_notifier)
 (swu_update_list_t list, void *context);
 void *context ;
} swu_update_list_notification_t;

Data:

void (*change_notifier)(swu_update_list_t list, void *context)

Callback function that runs in response to changes to an UpdateList.

When the structure is first registered with the library, the callback function

is called to inform the client of the current list contents.

void *context

Context pointer used when the change_notifier function is called.

© 2014, QNX Software Systems Limited 201

Software update core library

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

The swu_update_list_notification_t structure stores the pointer to a callback

function that processes notification changes related to an UpdateList as well as a

context pointer that stores additional information.

Functions in UpdateClient.h
Functions defined in UpdateClient.h for initializing the SWU library, creating and

managing Update and UpdateList objects, informing the client if the current system

can be updated, and registering and unregistering listeners for list change notifications.

swu_client_create_updates()
Create Update objects by reading a manifest file

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_create_updates(
 const char *path,
 swu_manifest_id_t *id)

Arguments:

path

Path of the update package.

id

Unique ID to identify the manifest file. This ID can be used later to release

the Update objects created with swu_client_release_updates().

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Create Update objects based on the manifest file found at the location in path. The

manifest file stores software update information in the .ini file format (for details,

see the Manifest file (p. 139) section). The Update objects created are associated with

the manifest file ID specified in id.

202 © 2014, QNX Software Systems Limited

Software Updates

If the library fails to parse any updates listed in the manifest file, the overall operation

is considered to have failed and the function returns an SWU_RESULT_ERROR code.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

One of the arguments is invalid.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_conditions_invalid_for_installs()
Inform the UpdateClient that updates currently can't be installed

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_conditions_invalid_for_installs(
 void)

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Inform the UpdateClient that the current system conditions are invalid for installing

updates. Use this function to inform the library that the system currently can't accept

update installations. For example, you could call this function to disable updates when

the device is running on battery power.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

© 2014, QNX Software Systems Limited 203

Software update core library

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_conditions_valid_for_installs()
Inform the UpdateClient that updates can be installed

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_conditions_valid_for_installs(
 void)

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Inform the UpdateClient that the current system conditions allow for installing

updates. Use this function to inform the library that the system can accept update

installations. For example, you could call this function to enable updates when the

device is no longer running on battery power.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

204 © 2014, QNX Software Systems Limited

Software Updates

swu_client_get_install_update_list()
Get a handle to the list of updates available to install or being installed

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_get_install_update_list(
 swu_update_list_t *list)

Arguments:

list

Pointer to an UpdateList handle. This pointer is set by the library.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get a handle to the list of updates available to install or being installed.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_get_target_list_length()
Get the number of items in the UpdateTarget list

Synopsis:

#include <swu/UpdateClient.h>

© 2014, QNX Software Systems Limited 205

Software update core library

swu_result_t swu_client_get_target_list_length(
 size_t *length)

Arguments:

length

On output, the length of the list.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the number of items in the UpdateTarget list. The function stores the list length

(i.e., the number of targets) in length.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_client_initialize()
Initialize the library

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_initialize(const char *client_id)

Arguments:

client_id

Unique ID for identifying the client.

206 © 2014, QNX Software Systems Limited

Software Updates

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Initialize the library. This function must be called before any other SWU library API

function to set up the swu-core library. The initialization function also assigns a

unique ID for the UpdateClient.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The library was successfully initialized.

SWU_RESULT_ERROR

The library couldn't be initialized.

swu_client_iterate_targets()
Iterate over the UpdateTarget list contents

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_iterate_targets(
 swu_client_target_iterator_t iterator,
 void *context)

Arguments:

iterator

Callback function to use for iterating over the list contents.

context

Context pointer that will be passed to the callback function.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

© 2014, QNX Software Systems Limited 207

Software update core library

Description:

Iterate over the list of registered update targets, which are represented as

UpdateTarget objects. After a call to this function completes successfully, the

library calls the callback function specified in iterator once for each list item and then

a final time with an swu_target_t value of NULL to indicate the end of the list.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_client_register_target_list_notification()
Register a listener to receive notifications about changes to the UpdateTarget list

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_register_target_list_notification(
 const swu_client_target_notification_t *notification)

Arguments:

notification

Pointer to an swu_client_target_notification_t (p. 199) structure

that defines how to notify a listener of changes to the UpdateTarget list.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Register a listener to receive notifications about changes to the UpdateTarget list.

This function informs the UpdateClient about a new listener interested in the

208 © 2014, QNX Software Systems Limited

Software Updates

UpdateTarget list contents. The function is called when a new UpdateTarget is

registered with the library or when an existing one is unregistered.

The notification structure isn't copied, so it's expected that the caller maintains this

structure. After the notification is successfully registered, the callback function referred

to in notification gets called.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_client_release_updates()
Release any updates associated with a certain manifest ID

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_release_updates(
 swu_manifest_id_t id)

Arguments:

id

Manifest ID set in an earlier call to swu_client_create_updates().

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Release any updates associated with the manifest ID specified in id.

Returns:

One of the following swu_result_t values:

© 2014, QNX Software Systems Limited 209

Software update core library

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_INITIALIZED

The library hasn't been initialized yet.

SWU_RESULT_ERROR

Another error occurred.

swu_client_set_logging_callback()
Enable logging of messages generated by the library

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_set_logging_callback(
 swu_logging_callback_t log_func)

Arguments:

log_func

The logging function to use. A NULL value causes the library to log

information on serious errors to stderr.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Enable logging of messages generated by the library. If no logging function is specified

(i.e., log_func is NULL), all messages with a severity level of at least

SWU_LOG_WARNING are logged to stderr.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_ERROR

An error occurred.

210 © 2014, QNX Software Systems Limited

Software Updates

swu_client_uninitialize()
Release the memory held by the library

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_uninitialize()

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Release the memory held by the library. This function must be called to free the

environment when the library is no longer being used.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_ERROR

An error occurred.

swu_client_unregister_target_list_notification()
Unregister a listener from receiving notifications about changes to the UpdateTarget

list

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_client_unregister_target_list_notification(
 const swu_client_target_notification_t *notification)

Arguments:

notification

Pointer to the swu_client_target_notification_t (p. 199) structure

used in the earlier call to swu_client_register_target_list_notification().

© 2014, QNX Software Systems Limited 211

Software update core library

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Unregister a listener from receiving notifications about changes to the UpdateTarget

list. This function informs the UpdateClient that the listener is no longer interested

in the UpdateTarget list contents.

You must pass in a pointer to the same swu_client_target_notification_t

structure that you used to register for notifications when calling

swu_client_register_target_list_notification(). At this point, the notification interface

registered in this earlier call is no longer needed.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_FOUND

The structure referred to in notification couldn't be found.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_update_list_get_length()
Get the number of Update objects in an UpdateList

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_update_list_get_length(
 swu_update_list_t list,
 size_t *length)

Arguments:

list

Handle of an UpdateList whose length is requested by the caller.

212 © 2014, QNX Software Systems Limited

Software Updates

length

On output, the length of the list.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the number of Update objects in the UpdateList specified in list. The function

stores the list length (i.e., the number of objects) in length.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_update_list_iterate()
Iterate over the contents of an UpdateList

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_update_list_iterate(
 swu_update_list_t list,
 swu_update_list_iterator_t iterator,
 void *context)

Arguments:

list

Handle of an UpdateList to iterate through.

iterator

Callback function to use for iterating over the list contents.

© 2014, QNX Software Systems Limited 213

Software update core library

context

Context pointer that will be passed to the callback function.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Iterate over the contents of the UpdateList specified in list. After a call to this

function completes successfully, the library calls the callback function specified in

iterator once for each list item (i.e., Update object) and then a final time with an

swu_update_t value of NULL to indicate the end of the list.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_update_list_register_notification()
Register a listener to receive notifications about changes to an UpdateList

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_update_list_register_notification(
 swu_update_list_t list,
 const swu_update_list_notification_t *notification)

Arguments:

list

Handle of an UpdateList for which the caller wants to receive notifications

of content changes.

214 © 2014, QNX Software Systems Limited

Software Updates

notification

Pointer to an swu_update_list_notification_t (p. 201) structure

that defines how to notify a listener of changes to the UpdateList.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Register a listener to receive notifications about changes to an UpdateList. This

function informs the UpdateClient about a new listener interested in the contents

of the UpdateList referenced in list.

The notification structure isn't copied, so the caller is expected to maintain this

structure. After the notification is successfully registered, the callback function referred

to in notification gets called.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_update_list_unregister_notification()
Unregister a listener from receiving notifications about changes to an UpdateList

Synopsis:

#include <swu/UpdateClient.h>

swu_result_t swu_update_list_unregister_notification(
 swu_update_list_t list,
 const swu_update_list_notification_t *notification)

Arguments:

list

© 2014, QNX Software Systems Limited 215

Software update core library

Handle of the UpdateList for which the caller no longer needs to receive

notifications.

notification

Pointer to the swu_update_list_notification_t (p. 201) structure

used in the earlier call to swu_update_list_register_notification().

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Unregister a listener from receiving notifications about changes to an UpdateList.

This function informs the UpdateClient that the listener is no longer interested in

content changes to the UpdateList referred to in list.

You must pass in a pointer to the same swu_update_list_notification_t

structure that you used to register for notifications when calling

swu_update_list_register_notification(). At this point, the notification interface

registered in this earlier call is no longer needed.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_FOUND

The structure referred to in notification couldn't be found.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

216 © 2014, QNX Software Systems Limited

Software Updates

UpdateTarget.h

The UpdateTarget.h header file defines functions that read UpdateTarget

information.

Functions in UpdateTarget.h
Functions defined in UpdateTarget.h for reading IDs and other UpdateTarget

information.

swu_target_get_id()
Get the ID of an UpdateTarget

Synopsis:

#include <swu/UpdateTarget.h>

swu_result_t swu_target_get_id(swu_target_t target,
 swu_target_id_t *id)

Arguments:

target

Handle of an UpdateTarget whose ID is requested by the caller.

id

A valid target ID on success.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get the ID assigned to the UpdateTarget specified in target. The ID is assigned to

the UpdateTarget when it calls swu_target_register() (p. 228). Each UpdateTarget

is given a different ID by the library, but this ID isn't unique across power cycles.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

© 2014, QNX Software Systems Limited 217

Software update core library

The target ID was invalid.

swu_target_get_info()
Get information about an UpdateTarget

Synopsis:

#include <swu/UpdateTarget.h>

swu_result_t swu_target_get_info(
 swu_target_t target,
 swu_target_sw_information_t *info)

Arguments:

target

Handle of an UpdateTarget whose information is requested by the caller.

info

Pointer to an swu_target_sw_information_t (p. 162) structure that

will store the target information.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Get information about the UpdateTarget referred to by target. This function copies

the target's information into the structure whose address is given in info. The

information includes the ID values of the target, the version of the software installed

on it, and more.

When swu_target_get_info() is called, the library calls the function referenced in the

get_info field of the swu_target_interface_t (p. 219) structure associated with

the UpdateTarget and then passes this function's return value back to the caller.

Returns:

One of the following swu_result_t values:

SWU_RESULT_INVALID_ARGUMENT

The target ID was invalid.

Return code from get_info function

218 © 2014, QNX Software Systems Limited

Software Updates

When a valid ID is given, the function returns the result code it receives

from the get_info function supplied by the UpdateTarget.

UpdateTargetInterface.h

The UpdateTargetInterface.h header file specifies the interface for the

UpdateClient to talk an UpdateTarget and defines functions that allow an

UpdateTarget to register itself with the library and to report the progress and

outcomes of update installations and verifications.

Data types in UpdateTargetInterface.h
The UpdateTargetInterface.h header file defines, in a structure, the

UpdateTarget interface used by the UpdateClient to request specific actions in

the update process.

swu_target_interface_t
Interface used by the UpdateClient to make requests of an UpdateTarget

Synopsis:

typedef struct {

 swu_result_t (*get_info)
 (swu_target_id_t id,
 swu_target_sw_information_t *info,
 void *get_info_context);

 void *get_info_context;

 swu_result_t (*prepare_to_install)
 (swu_target_id_t id,
 swu_update_t update,
 void *prepare_to_install_context);

 void *prepare_to_install_context;

 swu_result_t (*install)
 (swu_target_id_t id,
 swu_update_t update,
 void *install_context);

 void *install_context;

 swu_result_t (*cancel_install)
 (swu_target_id_t id,
 swu_update_t update,
 void *cancel_install_context);

 void *cancel_install_context;

 swu_result_t (*verify_update)
 (swu_target_id_t id,
 swu_update_t update,
 void *verify_update_context);

 void *verify_update_context;

© 2014, QNX Software Systems Limited 219

Software update core library

 swu_result_t (*rollback_update)
 (swu_target_id_t id,
 swu_update_t update,
 void *rollback_update_context);

 void *rollback_update_context;

} swu_target_interface_t;

Data:

swu_result_t (*get_info) (swu_target_id_t id, swu_target_sw_information_t *info, void

*get_info_context)

Pointer to a function that the UpdateClient can call to retrieve ID and

software version information from an UpdateTarget.

This function is primarily used when the application calls

swu_target_get_info() (p. 218), which always calls the get_info function.

However, the UpdateClient may call this latter function at other times

in the software update process.

void *get_info_context

Context pointer to use as a parameter when the get_info function is called.

swu_result_t (*prepare_to_install) (swu_target_id_t id, swu_update_t update, void

*prepare_to_install_context)

Pointer to a function that the UpdateClient can call to inform an

UpdateTarget that an update is available and that it should prepare for

the update.

The UpdateClient calls this function after the user accepts an update

that's ready for installation. The prepare_to_install function allows the

UpdateTarget to determine if it's in a state suitable for updates and, if

so, to prepare for an update installation.

If the UpdateTarget is ready, it should respond by calling

swu_target_ready_to_install() (p. 227) from its own context. If it's not ready,

it should call swu_target_not_ready_to_install() (p. 226).

void *prepare_to_install_context

Context pointer to use as a parameter when the prepare_to_install function

is called.

swu_result_t (*install) (swu_target_id_t id, swu_update_t update, void *install_context)

220 © 2014, QNX Software Systems Limited

Software Updates

Pointer to a function that the UpdateClient can call to tell an

UpdateTarget to start installing an update.

As soon as the UpdateTarget returns from this function, it can begin the

installation. As the installation progresses, the UpdateTarget can call

swu_target_install_progress() (p. 224) to indicate how far the installation has

progressed, but this reporting is optional. The decision to track and report

installation progress (and how often to do this) is an implementation detail.

void *install_context

Context pointer to use as a parameter when the install function is called.

swu_result_t (*cancel_install) (swu_target_id_t id, swu_update_t update, void

*cancel_install_context)

(Currently unused)

Pointer to a function that the UpdateClient can call to request an

UpdateTarget to cancel an ongoing update installation.

void *cancel_install_context

(Currently unused)

Context pointer to use as a parameter when the cancel_install function is

called.

swu_result_t (*verify_update) (swu_target_id_t id, swu_update_t update, void *verify_update_context

)

Pointer to a function that the UpdateClient can call to tell an

UpdateTarget to verify that an update was installed correctly.

The library calls this function after an update finishes installing. The

UpdateTarget can then perform any post-installation verification steps

defined for it. As with the other function pointers in this structure,

verify_update should be set to NULL if the UpdateTarget doesn't support

or require verification.

After the verification completes successfully, the UpdateTarget must call

swu_target_verification_successful() (p. 233) to indicate the success of this

operation to the library. If a problem occurs during the verification, the

UpdateTarget should call swu_target_verification_failed() (p. 231) and

provide the reason why the verification failed.

void *verify_update_context

© 2014, QNX Software Systems Limited 221

Software update core library

Context pointer to use as a parameter when the verify_update function is

called.

swu_result_t (*rollback_update) (swu_target_id_t id, swu_update_t update, void

*rollback_update_context)

(Currently unused)

Pointer to a function that the UpdateClient can call to request an

UpdateTarget to try to rollback a previously installed update.

void *rollback_update_context

(Currently unused)

Context pointer to use as a parameter when the rollback_update function is

called.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Interface used by the UpdateClient to make requests of an UpdateTarget. Each

UpdateTarget must register an swu_target_interface_t structure with the

UpdateClient so this latter component knows how to talk to the UpdateTarget

when requesting software update actions. Any functions not supported by the

UpdateTarget should have their function pointers set to NULL.

Because the functions referenced in this structure are executed in the context of the

library, it's expected that the UpdateTarget will quickly return from these functions.

The UpdateTarget should use its own context to perform any long-running operations.

Functions in UpdateTargetInterface.h
Functions defined in UpdateTargetInterface.h for registering and unregistering

an UpdateTarget, informing the library whether a target can currently be updated,

and reporting the progress and outcomes of update installations and verifications.

swu_target_install_failed()
Report an update installation failure

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_install_failed(
 swu_target_id_t id,

222 © 2014, QNX Software Systems Limited

Software Updates

 swu_update_t update,
 swu_failure_reason_t reason,
 swu_failure_code_t code)

Arguments:

id

ID of the UpdateTarget that failed to install the update. This ID was

assigned by the library in the call to swu_target_register().

update

Handle of an Update object representing the update that couldn't be

installed on the target.

reason

Constant defined by the swu_failure_reason_t (p. 152) enumeration

for indicating an installation failure

(SWU_FAILURE_REASON_INSTALL_FAILED).

code

User-defined error code to help determine the issue that caused the update

installation to fail. This value is only passed through and isn't used by the

library, but logging this value can be handy for debugging.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Report an update installation failure. An UpdateTarget (which is referenced in id)

calls this function to inform the UpdateClient that an error was encountered while

installing the update specified in update. It's expected that the UpdateTarget call

this function after returning from the install function referenced in its associated

swu_target_interface_t structure.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

© 2014, QNX Software Systems Limited 223

Software update core library

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_target_install_progress()
Report progress in an ongoing update installation

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_install_progress(
 swu_target_id_t id,
 swu_update_t update,
 swu_progress_t progress)

Arguments:

id

ID of the UpdateTarget that's reporting installation progress. This ID was

assigned by the library in the call to swu_target_register().

update

Handle of an Update object representing the update currently being

installed.

progress

Installation progress, as a percentage of the installation that's completed.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Report progress in an ongoing update installation. An UpdateTarget (which is

referenced in id) calls this function to inform the UpdateClient about installation

progress for the update specified in update. Note that this progress reporting is optional.

If it chooses to report progress, an UpdateTarget should call this function only after

successfully returning from the install function referenced in its associated

swu_target_interface_t structure.

224 © 2014, QNX Software Systems Limited

Software Updates

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_target_install_successful()
Report a successful update installation

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_install_successful(
 swu_target_id_t id,
 swu_update_t update)

Arguments:

id

ID of the UpdateTarget that successfully installed the update. This ID

was assigned by the library in the call to swu_target_register().

update

Handle of an Update object representing the update that was installed on

the target.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Report a successful update installation. An UpdateTarget (which is referenced in

id) calls this function to inform the UpdateClient that the update specified in

update was successfully installed. It's expected that the UpdateTarget call this

function after returning from the install function referenced in its associated

swu_target_interface_t structure.

© 2014, QNX Software Systems Limited 225

Software update core library

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_target_not_ready_to_install()
Inform the UpdateClient that a target isn't ready to install an update

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_not_ready_to_install(
 swu_target_id_t id,
 swu_update_t update,
 swu_failure_reason_t reason,
 swu_failure_code_t code)

Arguments:

id

ID of the UpdateTarget that's not ready to install an update. This ID was

assigned by the library in the call to swu_target_register().

update

Handle of an Update object containing an update that the client is trying

to install.

reason

Constant defined by the swu_failure_reason_t (p. 152) enumeration

for indicating that the target is not ready for an update

(SWU_FAILURE_REASON_NOT_READY_FOR_UPDATE).

code

User-defined error code to help determine the issue preventing the target

from installing the update. This value is only passed through and isn't used

by the library, but logging this value can be handy for debugging.

226 © 2014, QNX Software Systems Limited

Software Updates

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Inform the UpdateClient that a target isn't ready to install an update. The

UpdateTarget indicated in id calls this function after determining that the target

is not ready to install the update specified in update. It's expected that the

UpdateTarget call this function after returning from the prepare_to_install

function referenced in its associated swu_target_interface_t structure.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_target_ready_to_install()
Inform the UpdateClient that a target is ready to install an update

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_ready_to_install(
 swu_target_id_t id,
 swu_update_t update)

Arguments:

id

ID of the UpdateTarget that's ready to install an update. This ID was

assigned by the library in the call to swu_target_register().

update

Handle of an Update object containing an update to install on the target.

© 2014, QNX Software Systems Limited 227

Software update core library

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Inform the UpdateClient that a target is ready to install an update. The

UpdateTarget indicated in id calls this function after determining that the target

is ready to install the update specified in update. It's expected that the UpdateTarget

call this function after returning from the prepare_to_install function referenced

in its associated swu_target_interface_t structure.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_target_register()
Inform the UpdateClient of a new UpdateTarget

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_register(
 const char *vendor_id,
 const char *hardware_id,
 swu_target_interface_t *interface,
 swu_target_id_t *id)

Arguments:

vendor_id

Constant string for the target's vendor ID, used with the value in hardware_id

to uniquely identify the UpdateTarget. The function makes its own copy

of the string.

hardware_id

228 © 2014, QNX Software Systems Limited

Software Updates

Constant string for the target's hardware ID, used with the value in vendor_id

to uniquely identify the UpdateTarget. The function makes its own copy

of the string.

interface

Handle of the swu_target_interface_t (p. 219) structure used by the

UpdateClient to communicate with a specific UpdateTarget.

id

On output, the UpdateTarget ID assigned by the UpdateClient.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Inform the UpdateClient of a new UpdateTarget. The client assigns an ID to the

target and uses that ID when communicating with the target. The function doesn't

copy the swu_target_interface_t structure, which is expected to be maintained

by the caller.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_DUPLICATE_ENTRY

An UpdateTarget with this Vendor ID and Hardware ID pair has already

been registered.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

© 2014, QNX Software Systems Limited 229

Software update core library

swu_target_unregister()
Inform the UpdateClient that an UpdateTarget is no longer available

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_unregister(swu_target_id_t id)

Arguments:

id

ID of the UpdateTarget to unregister. This ID was assigned by the library

in the call to swu_target_register().

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Inform the UpdateClient that an UpdateTarget is no longer available. This

function removes the UpdateTarget specified in id from the library. After this

function is called, the UpdateClient won't call the functions referenced by the

pointers in the target's associated swu_target_interface_t structure. At this

point, this interface structure is no longer needed.

The ID assigned to the unregistered UpdateTarget won't be used again during the

same power cycle.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_NOT_FOUND

An UpdateTarget with the specified ID could not be found.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

230 © 2014, QNX Software Systems Limited

Software Updates

Another error occurred.

swu_target_verification_failed()
Report an update verification failure

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_verification_failed(
 swu_target_id_t id,
 swu_update_t update,
 swu_failure_reason_t reason,
 swu_failure_code_t code)

Arguments:

id

ID of the UpdateTarget that failed to verify the update. This ID was

assigned by the library in the call to swu_target_register().

update

Handle of an Update object representing the update whose installation

couldn't be verified on the target.

reason

Constant defined by the swu_failure_reason_t (p. 152) enumeration

for indicating a verification failure

(SWU_FAILURE_REASON_INSTALL_VERIFICATION_FAILED).

code

User-defined error code to help determine the issue that caused the update

installation to fail. This value is only passed through and isn't used by the

library, but logging this value can be handy for debugging.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Report an update verification failure. An UpdateTarget (which is referenced in id)

calls this function to inform the UpdateClient that an error occurred while verifying

the installation of the update specified in update. It's expected that the

© 2014, QNX Software Systems Limited 231

Software update core library

UpdateTarget call this function after returning from the verify_update function

referenced in its associated swu_target_interface_t structure.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_target_verification_progress()
Report progress in an ongoing update verification

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_verification_progress(
 swu_target_id_t id,
 swu_update_t update,
 swu_progress_t progress)

Arguments:

id

ID of the UpdateTarget that's reporting verification progress. This ID was

assigned by the library in the call to swu_target_register().

update

Handle of an Update object representing the update currently being verified.

progress

Verification progress, as a percentage of the verification that's completed.

Library:

libswu-core

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

232 © 2014, QNX Software Systems Limited

Software Updates

Description:

Report progress in an ongoing update verification. An UpdateTarget (which is

referenced in id) calls this function to inform the UpdateClient about verification

progress for the update specified in update. Note that this progress reporting is optional.

If it chooses to report progress, an UpdateTarget should call this function only after

successfully returning from the verify_update function referenced in its associated

swu_target_interface_t structure.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

swu_target_verification_successful()
Report a successful update verification

Synopsis:

#include <swu/UpdateTargetInterface.h>

swu_result_t swu_target_verification_successful(
 swu_target_id_t id,
 swu_update_t update)

Arguments:

id

ID of the UpdateTarget that successfully verified the update. This ID was

assigned by the library in the call to swu_target_register().

update

Handle of an Update object representing the update that was verified on

the target.

Library:

libswu-core

© 2014, QNX Software Systems Limited 233

Software update core library

Use the -l swu-core option with qcc to link against the SWU library. This library

is usually included automatically.

Description:

Report a successful update verification. An UpdateTarget (which is referenced in

id) calls this function to inform the UpdateClient that the update specified in

update was successfully verified. It's expected that the UpdateTarget call this

function after returning from the verify_update function referenced in its associated

swu_target_interface_t structure.

Returns:

One of the following swu_result_t values:

SWU_RESULT_SUCCESS

The operation succeeded.

SWU_RESULT_INVALID_ARGUMENT

An invalid argument was given.

SWU_RESULT_ERROR

Another error occurred.

234 © 2014, QNX Software Systems Limited

Software Updates

Software update daemon

The software update daemon (swud) contains the swu-core library as well as a

resource manager that dynamically loads modules that use the swu-core API to

perform software updates. These modules contain platform-specific software update

functionality that extends the library's capabilities.

The swud service and the modules that it uses are started automatically by SLM (p.

247) during startup but you can explicitly start the service or manually load its modules

if you want to. You can also define your own swud modules to customize the software

update process. The QNX CAR platform comes with several reference modules that

provide programming examples of how to process software update packages stored on

USB devices and how to define HMI and command-line controls from which users can

initiate updates.

swud

Validates update packages on attached devices, notifies HMI of pending updates, and

initiates update process when requested by user.

Syntax:

swud -i client_id [-d] [-v] [-m module_path[=module_args]]*

Options:

-d

Run swud in the foreground, not as a daemon. This flag is useful for

debugging.

-i client_id

(Required)

The update client ID. This ID is defined by your system integrator and is

available as part of the Software Update (SWU) client configuration.

-m module_path[=module_args]

Load the module at module_path. The =module_args component is an

optional, comma-separated list of arguments to be passed to the module.

Here's an example of launching swud with the swud-self-update-hmi

module while specifying the vendor ID and hardware ID:

swud -m swud-self-update-hmi.so=QNX,CAR2.1

© 2014, QNX Software Systems Limited 235

Software update daemon

You can provide multiple -m options on the command line to load and pass

parameters to as many modules as you like.

-v

Increase output verbosity (messages are written to sloginfo). The -v

option is cumulative; each additional v adds a level of verbosity, up to 7

levels. For example, swud -vvv sets a verbosity level of 3.

The default setting is 0, meaning verbosity is turned off.

Description:

You should start swud with an explicit command only if this daemon process

terminates unexpectedly or you've disabled its automatic startup in SLM. Before

trying to start swud manually, always confirm that the process isn't already

running by checking the list of active processes with pidin or ps.

The swud service detects manifest files stored on attached devices. When it finds a

manifest file, swud validates this file along with the delta file named in it. If these

files are valid, swud notifies the HMI, which can then display the pending update to

the user. If either file is invalid (e.g., because of an incorrect base version), swud

doesn't process the update further but logs an error to slogger and to the HMI.

When the user initiates the update through the HMI, swud copies the manifest file

and the delta file from the attached device to /var/swud. Next, swud uses the

partial-shutdown utility, downsize, to terminate all processes except those needed

to apply the update. Finally, swud applies the software update based on the delta file

contents.

You must provide a client ID when running swud, whether through SLM or the

command line. The client ID is an alphanumeric string and is found in the SWU client

configuration. You can optionally use the -m option to load modules and pass arguments

to them. Also, you can run the service in the foreground for debugging purposes (by

using -d), and enable different levels of verbosity by using between 1 and 7 -v options.

Loading swud modules

You can dynamically load swud modules with the mount command.

To load modules when swud is running:

1. Run the mount command like this: mount -T swud [-o module_options]

module_path

The module_path argument must contain either a path defined in the

LD_LIBRARY_PATH environment variable or the absolute path of the module. The

236 © 2014, QNX Software Systems Limited

Software Updates

optional module_options argument can contain a comma-separated list of options

to pass into the swud module.

Here's an example that loads the swud-self-update-hmi module while

specifying the vendor ID and hardware ID to match the self-update target:

mount -T swud -o QNX,CAR2.1 swud-self-update-hmi.so

Developing swud modules

You can customize the software update process by developing your own swud modules.

Developing custom swud modules requires implementing the SWU module API (p.

244) defined in swud/swu_module.h and compiling the module as a dynamically

linked library (DLL). After the module has been loaded and initialized, it can start

interacting with the swu-core library through its core API (p. 244).

Implementing a swud module

Every swudmodule is required to implement the SWU_MODULE_INITIALIZE() function

from the swu_module API. The swud service calls this function when loading a

module. This function should only initialize the module, start any needed threads,

and then return as quickly as possible so it doesn't block swud.

The initialization function has a generic function signature, accepting an argc-argv

argument list. However, these arguments aren't meant to be parsed with getopt(),

primarily because the mount command (which swud supports) doesn't allow optarg

arguments. The recommended approach for parsing arguments is to use

comma-separated key-value pairs after the -o option, like this:

mount -T swud -o a=value,b=value,c=value

In this example, the argument list, as parsed by swud, would be passed into

SWU_MODULE_INITIALIZE() like this:

argc = 3
argv[0] = "a=value"
argv[1] = "b=value"
argv[2] = "c=value"
argv[3] = NULL

Implementing SWU_MODULE_SHUTDOWN() is optional. Any implementation of this

function must be signal handler-safe because it will be called from a signal handler

in swud. This means all calls made by the shutdown function must also be signal

handler-safe. The intended use for this function is to do any cleanup that must be

done before swud exits, such as saving files or any other tasks needed to ensure

information persistence.

© 2014, QNX Software Systems Limited 237

Software update daemon

Reference modules

The swud utility is packaged with a set of reference modules. Together, these

components provide a reference implementation, based on the QNX CAR platform,

for performing USB-based software updates.

swud-usb.so

The swud-usb.so module monitors USB mass-storage devices for software update

packages and notifies the swu-core library when they're discovered. This module

has limitations. For example, it loads the first manifest file it finds and looks only in

the root directory of the USB device.

The module relies on the mcd service to detect when mass-storage devices are attached.

The QNX CAR target image contains the following entry in /etc/mcd.conf to search

for manifest files on mass-storage devices:

[UPDATE]
Callout = FNAME_PATTERN
Argument = depth=1,*.manifest
Match Rule = INSERTED
Fail Rule = INSERTED

The Argument key in this sample mcd configuration entry contains argument values

matching the default arguments given to swud-usb.so. Your system integrator may

configure mcd differently; if so, you should ensure that the arguments passed to

swud-usb.so match the mcd configuration.

You can load the module with the following optional arguments:

swud-usb.so [manifest_file_extension insertion_path ejec

tion_path]

Either all or none of these arguments must be

present.

These arguments have the following meanings:

manifest_file_extension

The file extension that the module looks for to recognize manifest files. The

default is .manifest.

insertion_path

The path for mcd to write notifications of inserted USB devices containing

software update packages. The default is /dev/mcd/UPDATE.

ejection_path

238 © 2014, QNX Software Systems Limited

Software Updates

The path for mcd to write notifications of ejected USB devices containing

software update packages. The default is /dev/mcd/EJECTED.

swud-legacy-hmi.so

The swud-legacy-hmi.so module provides a PPS bridge between the swu-core

library and the Settings app in the HMI. The Settings app has some functionality

limits, one of which is its ability to display only the first update in the list to the user.

The module publishes notifications to the HMI through the

/pps/services/update/status object and subscribes to HMI-issued commands

through the /pps/services/update/control object.

You can load the module with the following optional argument:

swud-legacy-hmi.so [pps_base_path]

where pps_base_path is the root path of the PPS subsystem. The default value is

/pps. All PPS objects used by this module are located in

pps_base_path/services/update/.

swud-client-config.so

The swud-client-config.so module allows the following parameters to be

configured in the swu-core library using PPS:

• localUpdatesEnabled

• maxUpdateRetries

• updateGracePeriod

This module both publishes and subscribes to these parameters in the

/pps/services/update/settings PPS object.

You can load the module with the following optional argument:

swud-client-config.so [pps_base_path]

Here, pps_base_path is the root path of the PPS subsystem. The default value is /pps.

All PPS objects used by this module are located in

pps_base_path/services/update/.

swud-self-update-hmi.so

The swud-self-update-hmi.so module provides a basic HMI that's displayed

when the QNX CAR platform updates itself. The HMI shows a simple progress bar

while a software update is being applied.

To specify the target to update, provide the following arguments when the module is

loaded:

swud-self-update-hmi.so vendor_id hardware_id

© 2014, QNX Software Systems Limited 239

Software update daemon

These mandatory arguments have the following meanings:

vendor_id

A vendor-defined string identifying the vendor of the self-update target.

hardware_id

A vendor-defined string identifying the hardware of the self-update target.

swud-simple-self-update.so

The swud-simple-self-update.so module reads a manifest file, loads it, and

then installs the first update defined in the file. An example use case is when you

want the system to resume applying an incomplete update after it gets interrupted,

for example, by an unexpected power cycle. This resumed self-update is initiated by

launching swud with the swud-simple-self-update.so module during system

startup.

Load this module with the following argument:

swud-simple-self-update.so manifest_path

where manifest_path is the path where the manifest file to be processed is located.

rb-self-update.so

The rb-self-update.so module applies a software update. You must provide a

delta file, which you can obtain from your system provider or generate using Red Bend

tools (p. 241). To update your system through the HMI, you must also provide a manifest

file (p. 139).

You can load this module with the following optional arguments:

rb-self-update.so [delta=delta_path] [temp=temp_path]

[pps_target=ppstarget] [persist=persist_file_path]

These arguments have the following meanings:

delta_path

The path where the delta file will be copied to. The default path is

/dos/mydelta.mld.

temp_path

The path used by Red Bend when working with the delta file. The default

path is /dos/updAgentTmp.

ppstarget

240 © 2014, QNX Software Systems Limited

Software Updates

The path for storing the target information, which consists of the hardware

ID, vendor ID, and a serial number. The default path is

/pps/services/update/target.

persist

The output path for a persistent manifest file to support resuming the update

in case of an unexpected system restart. The default path is

/dos/swu_persist.manifest.

Generating a delta file

You can generate your own delta file to update your system to a target version.

To generate a delta file, you must have a version of the Red Bend tools with the same

major revision (currently v8.x) as the Software Updates app used by the QNX CAR

platform. The file contents are based on the source and target version trees. The source

tree must match the version of software that's currently running on your system. The

target tree is always the version of software that you want to upgrade to.

These instructions also assume that you're running the update-generation process on

an Ubuntu Linux system; Windows hosts aren't currently supported.

Before you can generate the delta file, you must first obtain a configuration

file to control the delta generator (this process is described in the Red Bend

Integrator's Reference manual). Step 1 (p. 241) in the following procedure shows

how to create your own configuration file.

To generate a delta file:

1. If necessary, create the main configuration file by copying the following content

into a new XML file:

<vrm>
 <DeltaType>update</DeltaType>
 <ComponentDeltaFileName>
 QNXCAR2-myname-from_version-to_version.mld
 </ComponentDeltaFileName>
 <RamSize>0x20000000</RamSize>
 <Statistics>stats_from_version-to_version.txt</Statistics>
 <keepinvaliddelta>1</keepinvaliddelta>
 <partition>
 <PartitionName>apps</PartitionName>
 <PartitionType>PT_FS</PartitionType>
 <MountPoint>/</MountPoint>
 <SourceVersion>source</SourceVersion>
 <TargetVersion>target</TargetVersion>
 <ExcludeSourceFilter>filter.xml</ExcludeSourceFilter>
 <ExcludeTargetFilter>filter.xml</ExcludeTargetFilter>
 </partition>
</vrm>

© 2014, QNX Software Systems Limited 241

Software update daemon

The listing above contains the recommended contents for the configuration file.

The <ComponentDeltaFileName> tag names the delta file. The required filename

format depends on whether you want to apply the update through the HMI or the

command line. If you want to use the HMI, your filename must follow the format

QNXCAR2-myname-from_version-to_version.mld, where:

myname

An optional substring you can use to make the filename more readable.

from_version

Decimal number of the version of the source tree.

to_version

Decimal number of the version of the target tree.

To find the source version number, look in /etc/os.version (it's the

number next to buildNum, for example, 5346). The location of the target

version number depends on your system provider. It may be in the name

of the archive file that contains the filesystem image of the target version

or it may be listed on your system provider's download webpage.

If you want to use the command line to apply the update, your filename must be

mydelta.mld; in this case, you don't need to include the source and target version

numbers in the filename.

In this example, the statistics file is given a name (in the <Statistics> tag)

that contains the source and target version numbers, but you can assign any name

to this file.

2. If necessary, create the filter definition file that's used by the main configuration

file by copying the following content into a new XML file:

<FilterFile version=1.0>
 <ExcludeSourceFilter>dos/qnx-ifs</ExcludeSourceFilter>
 <ExcludeTargetFilter>dos/qnx-ifs</ExcludeTargetFilter>
</FilterFile>

In this example, you would name the filter definition file filter.xml so it will

be picked up by the main configuration file created in Step 1 (p. 241).

This additional XML file defines the filters that prevent the boot image of the DOS

partition on the system's SD card from being overwritten during the update.

3. In the directory where you plan to run the update generator, create two new

subdirectories called source and target.

242 © 2014, QNX Software Systems Limited

Software Updates

The source directory will contain the filesystem image that matches what is

currently running on your system. The target directory will contain the filesystem

image that your system will run after the update.

When unpacking the filesystem image files, make sure to use sudo and

to include the -p option when running tar. Since the permissions of some

of the files in the image are owned by root, it's important not to modify

them during this process.

4. In the source directory, unpack the filesystem:

cd source
sudo tar xmzpf ../board.variant.version.tar.gz
 base dos var/pps/qnxcar/system/info

where board.variant.version.tar.gz is the name of the source filesystem

image.

When listing the files to unpackage in the tar command, don't include

any files from the user data partition, which is mounted to '/', except for

/var/pps/qnxcar/system/info. You must prevent user data from

being overwritten by the update so you can retain your preferred settings

for all apps. You can specify a more restricted set of files than what's shown

in the sample tar command to further narrow the scope of the update.

5. In the target directory, unpack the filesystem image of the build that you want

to update your device to:

cd ../target
sudo tar xmzpf ../board.variant.version.tar.gz
 base dos var/pps/qnxcar/system/info

where board.variant.version.tar.gz is the name of the target filesystem

image.

As in Step 4 (p. 243), don't include any files from the user data partition in

the list of files to unpackage (except for

/var/pps/qnxcar/system/info).

6. Run the update generator, using sudo privileges:

sudo ./vRapidMobileCMD-Linux.exe /type=vRM
 /configuration_file=./deltaConfig.xml

where deltaConfig.xml is the name of the file you created in Step 1 (p. 241).

An update (delta) file with a name in the format

QNXCAR2-myname-from_version-to_version.mld will be written to your

current directory. You'll use this file to update your system.

© 2014, QNX Software Systems Limited 243

Software update daemon

SWU module API

The SWU module API must be implemented by any custom swud module that you

develop so that swud can load and unload the module.

The API is small, consisting of only an initialization function

(SWU_MODULE_INITIALIZE()), which is mandatory for all modules to implement, as

well as a shutdown function (SWU_MODULE_SHUTDOWN()), which is optional to

implement.

Constants in swu_module.h

Constants defined in swu_module.h to provide short forms of API function names.

Definitions in swu_module.h
Preprocessor macro definitions in swu_module.h for aliasing SWU module API

functions.

Definitions:

#define SWU_MODULE_INITIALIZE swu_module_initialize

#define SWU_MODULE_SHUTDOWN swu_module_uninitialize

Functions in swu_module.h

Functions defined in swu_module.h for initializing and shutting down modules.

SWU_MODULE_INITIALIZE()
Initialize a module after it has been loaded.

Synopsis:

#include <swud/swu_module.h>

swu_result_t SWU_MODULE_INITIALIZE(int argc, char *argv[])

Arguments:

argc

Number of items in argv.

argv

An array containing the arguments passed into the module when it was

loaded.

244 © 2014, QNX Software Systems Limited

Software Updates

Description:

Initialize a module. The swud service calls this function on a module after it's finished

loading it. The function should only initialize the module, allocate any necessary

resources (e.g., threads), and then return as quickly as possible so it doesn't block

swud.

Returns:

An swu_result_t constant indicating if the initialization was successful or what

error (if any) occurred.

SWU_MODULE_SHUTDOWN()
Shut down a module before the SWU process exits.

Synopsis:

#include <swud/swu_module.h>

swu_result_t SWU_MODULE_SHUTDOWN(void)

Description:

Shut down a module. The swud service calls this function on each loaded module,

while the service is shutting down. Implementing this function is optional; you can

skip its implementation for a module if nothing special needs to be done to shut it

down. Any implementation of this function must be signal handler-safe because it's

called from within a signal handler in swud. This means that all function calls made

within this function must also be signal handler-safe.

Returns:

An swu_result_t constant indicating if the shutdown was successful or what error

(if any) occurred.

© 2014, QNX Software Systems Limited 245

Software update daemon

Chapter 16
System Launch and Monitor (SLM)

The SLM service automates process management.

Overview

SLM is started early in the boot sequence to launch complex applications consisting

of many processes that must be started in a specific order.

System Launch and Monitor (SLM) is a utility controlled by a configuration file that

specifies the processes to run and their properties, especially any interprocess

dependencies. For example, suppose a multimedia application needs the services of

the audio subsystem and the database server, which in turn needs the services of PPS.

When SLM learns of these one-way dependencies when reading the configuration file,

the service internally constructs a directed acyclic graph (DAG) representing the

workflow of the underlying processes. This DAG is sorted to produce a partial ordering

for scheduling the processes so that all control-flow dependencies are respected. In

this example, SLM would first check that PPS is running before starting the database

server and then check that the database server is up before starting the multimedia

app.

For more information about how to use SLM, see slm in the Utilities Reference.

© 2014, QNX Software Systems Limited 247

Chapter 17
Tether Manager (tetherman)

Tether portable devices to the QNX CAR platform

Syntax:

tetherman [-d] [-t] &

Options:

-d

Run in debug mode.

-t

Run in test mode.

Description:

Tethering allows portable devices, such as smartphones, tablets and laptops, to use

the QNX CAR platform to connect to the cloud. The tetherman service allows you

to tether portable devices to the platform using a Wi-Fi connection.

PPS objects

The tether manager uses the following PPS objects:

• /pps/services/tethering/control

• /pps/services/tethering/status

• /pps/system/navigator/status/tethering

© 2014, QNX Software Systems Limited 249

Chapter 18
Wi-Fi configuration (wpa_pps)

PPS interface for Wi-Fi configuration

Syntax:

wpa_pps [-A addr:port] [-c file]
[-D library] [-d] [-h path]
-i iface [iface1 [iface2]...]
[-j ap_iface] [-P script]
[-p path] [-r sec] [-S script] [-s] &

Options:

-A addr:port

Proxy to publish when proxy authentication is required.

-c file

Specify configuration file (default: /etc/wpa_pps.conf).

-D library

Specify and load a library with direct access to the driver.

-d

Enable debug messages (to stdout).

-h path

Specify the path and name of the binary to execute when configured for

Access Point. For example: -h /usr/sbin/hostapd_ti18xx.

-i iface [iface1 [iface2]...]

Specify the Wi-Fi interface to use. This must be the last argument on the

command line. Note that you can specify an optional prioritized list of

interfaces (e.g., for multi-homed operation, preference of default routes,

etc.).

-j ap_iface

Specify the AP (access-point) interface to use.

-P script

© 2014, QNX Software Systems Limited 251

Specify the script to run for updating proxy settings.

-p path

Specify the path for the wpa_supplicant control interface (e.g.,

/var/run/wpa_supplicant).

-r sec

Specify the number of seconds between updates of the connected network's

RSSI (default: 10). To never do any updates, specify -1.

-S script

Specify the script to run for updating the RSSI.

-s

Run in simulation mode; that is, run without a Wi-Fi.

Description:

The wpa_pps service provides an interface for configuring WPA (Wi-Fi Protected

Access) connections. For more information about QNX support for networking, see

“Networking Architecture” in the System Architecture Guide.

For more information about the configuration changes wpa_pps can make, see the

relevant PPS object descriptions:

• /pps/services/wifi/control

• /pps/services/wifi/status

Configuration

The wpa_pps service uses the /etc/wpa_pps.conf configuration file. To configure

WPA behavior, edit the parameters in this plain-text file.

252 © 2014, QNX Software Systems Limited

Wi-Fi configuration (wpa_pps)

Index

.qcf configuration files 38

A

AAP, See acoustic processing
acoustic echo cancellation 30, 31, 42, 43, 49, 57, 58, 59,

61, 71, 75
See also see handsfree telephony
configuration 31
events 49
handsfree calls 42
latency data 58, 59
prepare 61
set up 71
setting up 42
start 57
starting 42
stop 75
stopping 43
troubleshooting 43
volume 43

See also see handsfree telephony
acoustic echo cancellation (AEC) 26
acoustic processing 25, 39, 48, 49, 75

event data 48
events 49
remote access to library 39
stop 75

AEC, See acoustic echo cancellation
album art 14

retrieving 14
apm-aap-rcs-hf.so 39
artwork 14

retrieving 14
artwork client 14
attaching 42

io-acoustic 42
audio 15, 58, 59, 109, 114

ducking 15, 109, 114
managing concurrent streams 15, 109, 114
system latency 58, 59

audio manager 109
Audio Manager 15

B

Bluetooth 25
handsfree phone calls 25

C

Car Connectivity Consortium (CCC) 95
certificate manager 19
certmgr_pps 19

clock 117
synchronizes during startup 117

configuration 31, 38, 252
acoustic echo cancellation 31
acoustic processing 38
io-acoustic 31
WPA 252

core services 120
coreServices, See coreServices2
coreServices2 120

D

delta file 123, 241
definition 123
generating 241

description 236
swud 236

displays utility 93
ducking 15, 109, 114

audio 15, 109, 114

E

EB street director, See Elektrobit
echo cancellation, See handsfree telephony
Elektrobit 105

navigation engine 105
events 42, 49, 63, 65

acoustic processing 49
handsfree 63, 65
io-acoustic 42

G

gen-ifs 78, 82

H

handsfree 42, 50, 51, 53, 56, 57, 60, 61, 63, 65, 66, 69,
71, 73, 75

acoustic echo cancellation 42
acoustic routing 66
attachio-acoustic 50
latency estimate 53
latency test 73
mute audio 60
prepare acoustic processing 61
read events 63
register for events 65
set up acoustic echo cancellation 71
start acoustic processing 57
stop acoustic processing 75
tuning file 51
volume for echo cancellation 56, 69

© 2014, QNX Software Systems Limited 253

System Services Reference

handsfree telephony 25, 39
RCS 39
tuning file 39

I

image 78, 80, 82, 84
creating 78, 80, 82, 84

io-acoustic 26, 31, 32, 36, 42, 50
attach for handsfree 50
attaching 42
configuration 31
configuration keys 32, 36
registering for events from 42
set path to configuration file 42

io-audio 26
io-bluetooth 26
IOAP_* 44
ioap_device_t 47
ioap_event_next() 49
ioap_event_t 48
ioap_get_latency_estimate() 43
ioap_hf_attach() 42, 50
ioap_hf_config() 42, 51
IOAP_HF_EVENT_* 46
IOAP_HF_EVENT_STARTED 57
ioap_hf_events 46
ioap_hf_get_latency_estimate() 53
ioap_hf_get_log_level() 43, 54
ioap_hf_get_output_volume() 56
ioap_hf_get_volume_level() 43
ioap_hf_go 57
ioap_hf_go() 42
ioap_hf_latency_estimate_t 53, 58
ioap_hf_latency_test_t 59, 73
ioap_hf_mute() 60
ioap_hf_prepare() 42, 61
ioap_hf_read_events() 42, 63
ioap_hf_register_events() 42, 65
ioap_hf_route() 42, 66
ioap_hf_set_log_level() 43, 68
ioap_hf_set_output_volume() 69
ioap_hf_set_volume_level() 43
ioap_hf_setup() 43, 71
ioap_hf_start_latency_test() 73
ioap_hf_stop() 43, 75
ioap_io_map_t 72, 76
ioap_map_io_t 66
IOAP_MAX_DEVICE_IO 47
IOAP_MAX_DEVICE_PATH 47
ioap_start_latency_test() 43

K

keyboard 91, 93
keyboard-imf 91, 93

running 93

L

latency 53, 58, 59, 73
acoustic 53, 73
estimate 53
estimate data 58
test 73
test configuration 59

libacoustic 26
with handsfree acoustic echo cancellation 26

log 54, 68
verbosity level for acoustic processing 54, 68

M

management 19
certificate 19

manifest file 139
MCBSP, See multichannel buffered serial port
media controllers 16

using with now playing service 16
media players 16

using with now playing service 16
MirrorLink 95, 96, 98, 99, 100, 101, 102

devices for whitelist and blacklist 100
licensing 96
mlink-daemon 98
mlink-rtp 101
mlink-viewer 102
network sandbox 95
phones tested with 95
PPS objects used with 96
rtp PPS object 101
server devices 95
USB device enumeration 99
using SLM with 96

mkimage.py 82
mksysimage 84
mksysimage.py 80, 82, 84
mktar 87
multi-channel buffered serial port 26
mute 60

audio during acoustic processing 60

N

navigation engines 105
net_pps 107, 108

command-line options 107
configuration 108
running 107

net_pps.conf 108
network manager 107, 108

configuration 108
network sandbox (for MirrorLink) 95
noise reduction 26, 30
Now Playing service 16, 109, 114
nowplaying 16, 109, 114
NR, See noise reduction

254 © 2014, QNX Software Systems Limited

Index

P

PCM (pulse-code modulation digital audio format) 26
playback 16

stopping with the now playing service 16
PPS 105

navigation engines 105

R

radio 115, 116
reference application 116

Radio App 116
RadioApp 115, 116
RCS 39

handsfree telephony 39
Red Bend 241

version of FOTA software required 241
reference signal (acoustic echo cancellation) 29
remote control server, See RCS
routing 66

handsfree acoustic 66

S

SGID, See supplementary group ID
SLM 96, 100, 101

using to start a network sandbox for MirrorLink 96
using to start mlink-daemon 100
using to start mlink-rtp 101

software update core library, See swu-core
software update daemon, See swud
software updates 123, 127, 139, 241

applying 123
configuration file 241
delta file, See delta file
manifest file, See swu-core manifest file
state-transition diagram 127
supported platforms 241

street director, See Elektrobit
supplementary group ID 30

io-acoustic 30
swu-core 124, 125, 126, 129, 139, 142, 143, 150, 167,

198, 217, 219
architecture 124
concepts 126
integrating software update modules 129
internal components 125
introduction 124
manifest file 139
SWU library API 142, 143, 150, 167, 198, 217, 219

ClientConfiguration.h 143
Common.h 150
Update.h 167
UpdateClient.h 198
UpdateTarget.h 217
UpdateTargetInterface.h 219

swud 235, 236, 237, 238, 244
developing custom modules 237
introduction 235
loading modules dynamically 236
programming sample 238
reference modules 238
SWU module API 244

syslink_drv 115
System Launch and Monitor, See SLM

T

tabs 105
configuring 105

tar 87
creating 87

Technical support 11
tether manager 249
tethering, See tether manager
tetherman 249

running 249
TI J5 ECO EVM811x EVM 115

platform for reference radio application 115
TI Jacinto 5 116
troubleshooting 43

acoustic echo cancellation 43
tuning 39, 51

acoustic processing 51
configuration file for handsfree telephony 39
handsfree telephony 39

Typographical conventions 9

U

USB device enumeration (for MirrorLink) 99

V

verbosity 54, 68
acoustic processing log 54, 68

volume 43, 56, 69
for handsfree echo cancellation 56, 69
set for acoustic echo cancellation 43

W

Wi-Fi 252
WPA configuration 252

Wi-Fi Protected Access, See WPA
WPA 251, 252

configuration 251, 252
wpa_pps 251, 252

command-line options 251
configuration 252
running 251

wpa_pps.conf 252

© 2014, QNX Software Systems Limited 255

System Services Reference

256 © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Reference
	Typographical conventions
	Technical support

	Artwork Client (artwork_client_car2)
	Audio Management
	Audio manager PPS objects

	Certificate Management
	Geolocation
	Handsfree Telephony
	Handsfree telephony in QNX CAR
	Processing the handsfree call
	io-acoustic
	Configuring io-acoustic
	Configuration keys
	Example configurations
	Acoustic processing tuning files (.qcf)

	Remote control server (RCS)
	Using the io-acoustic API
	io-acoustic API
	IOAP_* type definitions
	IOAP_HF_EVENT_*
	ioap_device_t
	ioap_event_t
	ioap_event_next()
	ioap_hf_attach()
	ioap_hf_config()
	ioap_hf_get_latency_estimate()
	ioap_hf_get_log_level()
	ioap_hf_get_output_volume()
	ioap_hf_go()
	ioap_hf_latency_estimate_t
	ioap_hf_latency_test_t
	ioap_hf_mute()
	ioap_hf_prepare()
	ioap_hf_read_events()
	ioap_hf_register_events()
	ioap_hf_route()
	ioap_hf_set_log_level()
	ioap_hf_set_output_volume()
	ioap_hf_setup()
	ioap_hf_setup_t
	ioap_hf_start_latency_test()
	ioap_hf_stop()
	ioap_io_map_t

	Image Generation
	gen-ifs
	gen-osversion
	mkimage.py
	mksysimage.py
	mktar

	Keyboard
	Keyboard (keyboard-imf)

	MirrorLink
	The mlink-daemon service—discoverer, launcher, and audiorouter
	The mlink-rtp service—RTP audio streaming
	The mlink-viewer service—MirrorLink viewer app

	Navigation Engine
	Network Manager (net_pps)
	Now Playing Service
	Using the now playing service
	Now playing service PPS objects
	Now Playing Service (nowplaying)

	Radio
	RadioApp

	Realtime Clock Synchronization
	Shutdown service (coreServices2)
	Software Updates
	Software update core library
	Architecture of swu-core library
	Key concepts of the library
	How software update applications integrate with swu-core
	Manifest file
	SWU library API
	ClientConfiguration.h
	Functions in ClientConfiguration.h
	swu_client_configuration_disable_local_updates()
	swu_client_configuration_enable_local_updates()
	swu_client_configuration_get_id()
	swu_client_configuration_get_local_updates_enabled()
	swu_client_configuration_get_max_update_retries()
	swu_client_configuration_get_update_grace_period()
	swu_client_configuration_set_max_update_retries()
	swu_client_configuration_set_update_grace_period()

	Common.h
	Constants in Common.h
	Definitions in Common.h

	Enumerations in Common.h
	swu_failure_reason_t
	swu_result_t
	swu_update_priority_t
	swu_update_state_t
	swu_log_level_t

	Data types in Common.h
	swu_client_id_t
	swu_failure_code_t
	swu_failure_info_t
	swu_manifest_id_t
	swu_progress_t
	swu_string_t
	swu_target_t
	swu_target_id_t
	swu_target_sw_information_t
	swu_timestamp_t
	swu_update_t
	swu_update_id_t
	swu_update_list_t
	swu_uri_t

	Functions in Common.h
	swu_object_release()
	swu_object_retain()
	swu_result_to_string()
	swu_update_state_to_string()

	Update.h
	Data types in Update.h
	swu_update_notifications_t
	swu_update_state_mask_t

	Functions in Update.h
	swu_update_accept_install()
	swu_update_compare_to_id()
	swu_update_decline_install()
	swu_update_defer_install()
	swu_update_get_base_version()
	swu_update_get_can_be_declined()
	swu_update_get_can_be_deferred()
	swu_update_get_defer_period()
	swu_update_get_description()
	swu_update_get_failure_info()
	swu_update_get_grace_period()
	swu_update_get_id()
	swu_update_get_install_source_location()
	swu_update_get_install_percent_completed()
	swu_update_get_manifest_id()
	swu_update_get_name()
	swu_update_get_post_install_command()
	swu_update_get_priority()
	swu_update_get_pre_install_command()
	swu_update_get_prompt_to_install()
	swu_update_get_short_description()
	swu_update_get_state()
	swu_update_get_version()
	swu_update_get_release_timestamp()
	swu_update_get_size()
	swu_update_get_target()
	swu_update_get_verification_percent_completed()
	swu_update_register_notifications()
	swu_update_to_string()
	swu_update_unregister_notifications()

	UpdateClient.h
	Data types in UpdateClient.h
	swu_client_target_iterator_t
	swu_client_target_notification_t
	swu_logging_callback_t
	swu_update_list_iterator_t
	swu_update_list_notification_t

	Functions in UpdateClient.h
	swu_client_create_updates()
	swu_client_conditions_invalid_for_installs()
	swu_client_conditions_valid_for_installs()
	swu_client_get_install_update_list()
	swu_client_get_target_list_length()
	swu_client_initialize()
	swu_client_iterate_targets()
	swu_client_register_target_list_notification()
	swu_client_release_updates()
	swu_client_set_logging_callback()
	swu_client_uninitialize()
	swu_client_unregister_target_list_notification()
	swu_update_list_get_length()
	swu_update_list_iterate()
	swu_update_list_register_notification()
	swu_update_list_unregister_notification()

	UpdateTarget.h
	Functions in UpdateTarget.h
	swu_target_get_id()
	swu_target_get_info()

	UpdateTargetInterface.h
	Data types in UpdateTargetInterface.h
	swu_target_interface_t

	Functions in UpdateTargetInterface.h
	swu_target_install_failed()
	swu_target_install_progress()
	swu_target_install_successful()
	swu_target_not_ready_to_install()
	swu_target_ready_to_install()
	swu_target_register()
	swu_target_unregister()
	swu_target_verification_failed()
	swu_target_verification_progress()
	swu_target_verification_successful()

	Software update daemon
	swud
	Loading swud modules
	Developing swud modules
	Reference modules
	Generating a delta file
	SWU module API
	Constants in swu_module.h
	Definitions in swu_module.h

	Functions in swu_module.h
	SWU_MODULE_INITIALIZE()
	SWU_MODULE_SHUTDOWN()

	System Launch and Monitor (SLM)
	Tether Manager (tetherman)
	Wi-Fi configuration (wpa_pps)
	Index

