
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

Qt Development Environment

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, Foundry27 are trademarks of
BlackBerry Limited that are registered and/or used in certain jurisdictions, and
used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, April 24, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: QNX Qt Development Libraries ..9

QtQnxCar2 Library ..11

QPPS Library ..12

QPlayer Library ...14

Chapter 2: Preparing your host system for Qt development ...15

Installing QNX QDF ...16

Installing Qt Creator ..18

Configuring a QNX device in Qt Creator ...19

Configuring a toolchain in Qt Creator ..25

Chapter 3: Creating and running Qt apps in QNX CAR systems ...35

Creating a project for a new Qt App ..36

Defining the user interface ..38

Making a QML file into a project resource ...40

Adding code to load the UI ..42

Adding an image for the app icon ...43

Writing the app descriptor file ..44

QNX CAR environment variables ...45

XML elements in app descriptor file ..46

Packaging the app into a BAR file from Qt Creator ...59

Packaging the BAR file from the command line ..62

Qt command-line options for blackberry-nativepackager ..63

Deploying the BAR file on the target ...66

Running the app ...70

Cleaning the target before redeploying a BAR file ...72

Chapter 4: QPPS API ..75

Changeset ..76

DirWatcher ...77

Public functions in DirWatcher ...78

Signals in DirWatcher ..80

Object ...82

Public functions in Object ..83

Public properties of Object ...88

Qt Development Environment

Public slots in Object ...89

Signals in Object ...90

Simulator ...93

Public functions in Simulator ...94

Signals in Simulator ..101

Variant ...104

Public functions in Variant ...105

Chapter 5: QPlayer API ...115

Error and event type enumerations ...116

Error codes enum ..116

MediaSourceEventType ..116

TrackSessionEventType ..117

Media command classes ..119

BaseCommand ..120

BrowseCommand ...121

CreateTrackSessionCommand ...122

CurrentTrackCommand ...124

CurrentTrackPositionCommand ...125

ExtendedMetadataCommand ..126

MediaSourcesCommand ...127

MetadataCommand ..128

PlayerStateCommand ...129

SearchCommand ...130

TrackSessionInfoCommand ...132

TrackSessionItemsCommand ..133

Media information data types ...135

MediaNode ...135

MediaSource ...137

Metadata ..141

PlayerState ...143

Track ..145

TrackSession ...146

QPlayer class ..147

Public constants used by QPlayer ..149

Public functions in QPlayer ..150

Public slots in QPlayer ...157

Signals in QPlayer ...163

Table of Contents

About This Guide

This document describes the Qt components shipped with the QNX CAR platform, the

host system setup needed to develop Qt apps, and the Qt app packaging process.

Although HTML5 is suitable for writing apps that access web services, the Qt

components included with the platform provide many services for supporting

high-performance, UI-based automotive apps. Using these components, developers

proficient with Qt can create user-friendly apps that access car services and data.

See:To find out about:

Qt Libraries (p. 9)The Qt components included in the

platform and the capabilities of these

components

Preparing your host system for Qt

development (p. 15)

How to install and configure the necessary

Qt development tools on your host system

Creating and running Qt apps on QNX CAR

systems (p. 35)

How to create Qt apps on your host system

and run them on your target system

QtQnxCar2 Library (p. 11)The QtQnxCar2 library (which provides

access to car controls) and where to find

API documentation for this library

QPPS API (p. 75)The API of the QPPS library, which wraps

the PPS interface of platform services with

a Qt5 interface

QPlayer API (p. 115)The API of the QPlayer library, which

integrates media apps with the mm-

player media engine

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
QNX Qt Development Libraries

The QNX CAR platform ships with the Qt framework and several QNX Qt development

libraries that help you write your own Qt apps or Qt-based HMI. If you use a Qt-based

HMI, you can run Qt apps and apps written with other technologies, such as HTML5.

If your HMI is written with another technology, you can still run Qt apps.

The following QNX Qt development libraries are included with the platform:

QtQnxCar2

This library was developed to support the Qt5 HMI by providing a Qt5 API

for accessing middleware services such as navigation, vehicle sensors, and

voice-command processing. The library consists of C++ classes with these

features:

• Enumerations that define the possible settings for controls

• State information, retrievable through methods

• Signals to notify clients of state changes

• Functions for setting properties or performing domain-specific actions

QPPS

This library provides a Qt5 API for reading from and writing to PPS objects,

effectively replacing the POSIX system calls required to access and parse

those objects. Using this library, developers can use the standard Qt

mechanisms of signals and slots to interact with middleware services. The

QPPS library is used by QtQnxCar2 to communicate with PPS but the library

can be used directly by Qt apps.

QPlayer

This special-purpose library integrates the HMI Media Player and other media

apps with the platform's media browsing and playback engine, mm-player.

The QPlayer library doesn't interface with PPS, but forwards requests and

receives media information through the C API of mm-player.

Qt framework

The QNX CAR image includes the runtime binaries and libraries of version

5.2 of the Qt framework. No special configuration or setup is needed to

make Qt work on the target system; the version that ships with the platform

will run without modification.

Copyright © 2014, QNX Software Systems Limited 9

The tools for compiling and debugging Qt apps (Qt Creator and

qmake) aren't included in the target image. Instead, the

QNX CAR 2.1 installer unpackages these tools onto the host

(development) system. For more information on these Qt framework

tools, see the Qt Creator Manual and qmake Manual in the online

Qt Project documentation.

10 Copyright © 2014, QNX Software Systems Limited

QNX Qt Development Libraries

http://qt-project.org/doc/qtcreator-3.0/index.html
http://qt-project.org/doc/qt-5/qmake-manual.html

QtQnxCar2 Library

The QtQnxCar2 library provides a Qt5 API to access the automotive subsystems of

the QNX CAR platform.

The API consists of more than 50 C++ classes that access services including but not

limited to:

• App launching

• Audio and video playback

• Navigation

• Bluetooth

• Car settings (e.g., HVAC, sensors)

• On-screen keyboard

• Automated Speech Recognition (ASR)

The QtQnxCar2 API reference isn't included in this document. For the location

of this API documentation, see the QNX CAR 2.1 release notes.

Copyright © 2014, QNX Software Systems Limited 11

QtQnxCar2 Library

QPPS Library

The QPPS library wraps the interface to the Persistent Publish Subscribe (PPS) service

with a Qt5 interface. With this design, developers can avoid parsing and setting

attributes in the PPS objects used by the platform's middleware services (e.g.,

navigation, radio) and instead use the higher-level Qt5 interface to configure settings

for those services.

The library lets you interact with the middleware services at the level of objects and

attributes instead of POSIX system calls, which entail working with memory buffers

and file descriptors.

PPS object representation

To access a PPS object through the QPPS library, you simply create an Object instance

in the QPPS API, specifying the path of the PPS object (e.g., /pps/services/blue

tooth/control) and whether you want your app to publish data to this object,

subscribe to updates from this object, or both. Then, you can call the API Object

methods to set or retrieve one or many attributes at a time in the underlying PPS

object.

In addition, the interface provided by QPPS has these capabilities:

• Creation of PPS objects

• Support for boolean, numeric, binary data, string, and JSON-encoded attributes

• Automated notification of a PPS object's attribute changes to all subscribers

• Atomic updates of multiple attributes

• Attribute caching, which allows you to query the latest attribute settings without

reading the PPS object

• Troubleshooting functions to test if a PPS object is valid and to retrieve the last

error related to the object

Directory monitoring

You can create DirWatcher objects to monitor directories for PPS object additions and

removals. For example, you can track which devices are attached to your QNX CAR

system by monitoring the /pps/qnx/mount/ directory, which the device publishers

update when the user attaches or detaches a hardware device (e.g., a USB stick).

Simulator mode

You can run the library in simulator mode, which means it reads from and writes to a

simulated object instead of PPS objects in a real filesystem. This mode allows you to

develop and test HMI apps on a host system where PPS isn't present.

12 Copyright © 2014, QNX Software Systems Limited

QNX Qt Development Libraries

The simulator mode is transparent to QPPS clients. Your Qt app can create an Object

that represents a particular PPS path, register the Object with the Simulator object,

and then set PPS attributes and receive updates on attribute changes by using the

same library calls as when interacting with a real PPS object. Furthermore, you can

use the Simulator object to update and remove PPS attributes, similar to a platform

service that communicates system state changes through PPS.

You can also can monitor PPS directories in simulator mode by creating and using

DirWatcher objects, in the same way you would monitor directories on a system running

PPS.

Copyright © 2014, QNX Software Systems Limited 13

QPPS Library

QPlayer Library

The QPlayer library provides a Qt5 API for accessing the mm-player media browsing

and playback engine. Qt apps can use this library to issue media commands, retrieve

browsing results, and read the playback state through mm-player.

Unlike most services in the QtQnxCar2 library, QPlayer doesn't use PPS to

communicate with the middleware layer because mm-player has a C interface. The

Media Player in the Qt5 HMI provides a useful reference for integrating a Qt app with

the mm-player service using QPlayer.

The QPlayer library abstracts the mm-player API into a Qt-compliant object-oriented

interface with these features:

• Slots to control playback (e.g., play(), pause(), next(), previous())

• Signals to indicate media events (e.g., a change in playback state or the current

track's position)

• A command-based API that allows clients to easily define a main event loop that

doesn't block while waiting for slow operations (e.g., browsing on DLNA devices)

to complete

• Qt data types to replace C types (e.g., QString instead of char*)

• C++ classes to replace C structures in the mm-player API

14 Copyright © 2014, QNX Software Systems Limited

QNX Qt Development Libraries

Chapter 2
Preparing your host system for Qt development

To write Qt apps, you must install QNX Qt Development Framework (QNX QDF) and

Qt Creator 3.0 on your host system and then configure Qt Creator to work with QNX QDF

and the target system.

The host system is the machine where you develop apps, which can be a Windows or

a Linux machine. The target system is the machine where you run the apps. In the

QNX Qt development environment, the target is a hardware board running the QNX CAR

platform.

Before you can configure your host system to support Qt apps, you must have the

following:

• An installation of QNX SDP 6.6 on your host system. By default, this platform is

installed to C:\qnx660 on Windows and /usr/qnx660 on Linux. We refer to this

installation location as DEFAULT_SDP_PATH throughout this document.

• A target system running QNX CAR 2.1 that's connected to the same network as

the host system and has a valid IP address.

Copyright © 2014, QNX Software Systems Limited 15

Installing QNX QDF

QNX QDF is a collection of Qt header files, libraries, and command-line tools required

for building Qt apps. All its content comes from the open-source Qt project and is

prebuilt for convenience. You need to install QNX QDF before you can develop Qt apps

that target QNX CAR 2.1.

To install the QNX QDF:

1. Download the Qt archive file appropriate for your host system OS by going to our

website, www.qnx.com, logging into your myQNX account, and then going to the

Download area.

To find the archive file containing the Qt development tools that will work with

your host, search for files with names similar to “QT 5.2 (Windows Host

Tools)” or “QT 5.2 (Linux Host Tools)” in the download area of the QNX

website.

2. Open the archive file and navigate one level down from the root directory to access

the directory containing the QNX QDF files.

In the Windows archive, this will be the QtQNX directory, found within the top-level

qt-windows-armle-v7 directory. For Linux, this will be the qt5-5.2 directory,

found within qt-linux-armle-v7.

3. Unzip this directory to C:\ on Windows or / on Linux.

QNX QDF must be unzipped to this particular location because some Qt tools have

hardcoded paths. Installing the package to another location will result in compilation

and build errors when developing a Qt project. For Windows, your development

projects must also be on C:.

(Optional)

4. Verify the correctness of the QNX QDF path by opening an OS terminal, navigating

to C:\QtQNX\Qt520\bin on Windows or /base/qt5-5.2/bin on Linux, and

typing qmake -query:

16 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

http://www.qnx.com

The installation location should match the first few directory levels in the paths

listed in the output.

Copyright © 2014, QNX Software Systems Limited 17

Installing QNX QDF

Installing Qt Creator

Qt Creator is the IDE that you use to develop Qt apps. The IDE includes a code editor,

visual debugger, and integrated UI layout and forms designer. QNX CAR 2.1 supports

apps written with version 3.0 of Qt Creator.

To install Qt Creator 3.0:

1. Download the archive file appropriate for your host system OS from http://qt-

project.org/downloads#qt-creator to your host system.

Although Qt Creator is included in the binary packages for Qt 5.2.0, it's

not necessary to install this library.

2. Run the downloaded archive file (which is an .exe file on Windows and a .run

file on Linux) and install the product according to the installer's instructions.

Qt Creator 3.0 is installed. Before you can develop Qt apps, you must configure a QNX

device to represent your target system and a toolchain to define your compiler and

debugger settings. The sections that follow explain how to do this.

18 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

http://qt-project.org/downloads#qt-creator
http://qt-project.org/downloads#qt-creator

Configuring a QNX device in Qt Creator

You must configure a QNX device to tell Qt Creator which target system your apps will

be deployed onto. In the QNX Qt development environment, the target is your hardware

board running QNX CAR 2.1.

To configure a QNX device in Qt Creator:

1. In the IDE, select the Tools menu, then click Options to open the Options dialog.

2. Choose Devices in the left-side menu and click the Add... button on the right side.

Copyright © 2014, QNX Software Systems Limited 19

Configuring a QNX device in Qt Creator

3. In the Device Configuration Wizard Selection dialog, choose QNX Device and

click Start Wizard.

20 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

4. In the New QNX Device Configuration Setup dialog, fill in the connection fields:

a. Name the device configuration something meaningful, like OMAP5432.

b. Enter the IP address of the target board.

c. In each of the username and password fields, enter root.

To display this last field, ensure you've selected Password as the authentication

type.

d. Click Next.

Copyright © 2014, QNX Software Systems Limited 21

Configuring a QNX device in Qt Creator

5. On the summary page, click Finish.

Qt Creator starts the device connectivity test, which entails connecting to the newly

configured device and checking if the specified ports and certain key services (e.g.,

grep, awk) are available.

6. Examine the test results in the Device Test dialog, then click Close to return to the

Options dialog.

22 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

7. If the test failed, review the new device's connection settings (now shown in the

Devices tab) and fix any improper settings. You can then click Test (on the right

side) to retest your device (this action relaunches the Device Test dialog and you

would then go back to Step 6 (p. 22)).

Copyright © 2014, QNX Software Systems Limited 23

Configuring a QNX device in Qt Creator

8. Click the OK button in the bottom right corner to close the Options dialog.

You must close the Options dialog and return to the main application

screen before relaunching the same dialog and configuring the build and

run settings; otherwise, the new device won't be listed. Clicking Apply

isn't enough to save the new device configuration. This is a known issue

in Qt Creator.

Qt Creator has a device profile representing your target system. You can now configure

a toolchain.

24 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

Configuring a toolchain in Qt Creator

After defining a QNX device to represent your target system, you must set up a toolchain

in Qt Creator. The toolchain defines the build and run environment based on the

QNX QDF installation and the compiler, debugger, and target device configurations.

To configure a toolchain in Qt Creator:

1. In the IDE, select the Tools menu, then click Options to open the Options dialog.

2. Choose Build & Run in the left-side menu, click the Qt Versions tab in the main

viewing area, then click the Add... button on the right side.

Copyright © 2014, QNX Software Systems Limited 25

Configuring a toolchain in Qt Creator

The IDE opens a file selector.

3. In the file selector, either navigate to C:\QtQNX\Qt520\bin and select

qmake.exe (on Windows) or navigate to /base/qt5-5.2/bin and select qmake

(on Linux), then click Open.

26 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

The Options dialog displays additional fields for configuring the selected Qt version.

4. At the bottom of the dialog, on the line that reads QNX Software Development

Platform, click Browse....

Copyright © 2014, QNX Software Systems Limited 27

Configuring a toolchain in Qt Creator

The IDE opens another file selector.

5. Navigate to DEFAULT_SDP_PATH and click Select Folder.

The QNX Software Development field now lists the directory containing the

QNX SDP 6.6 installation on your host system.

6. Click the Compilers tab, click the Add button on the right side, then select QCC

from the dropdown list.

28 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

The Options dialog displays additional fields at the bottom for configuring the newly

added compiler.

7. Fill in the compiler fields:

a. In the Name field, enter QNX SDP 6.6 QCC.

b. On the Compiler path line, click Browse... to open the file selector. On

Windows, navigate to DEFAULT_SDP_PATH\host\win32\x86\usr\bin and

choose qcc.exe. On Linux, navigate to DEFAULT_SDP_PATH/host/lin

ux/x86/usr/bin and choose qcc. Click Select Folder to confirm the setting.

c. On the NDK/SDP path line, click Browse... to open the file selector, navigate

to DEFAULT_SDP_PATH, then click Select Folder.

d. In the dropdown list for ABI, select arm-linux-generic-elf-32bit.

Copyright © 2014, QNX Software Systems Limited 29

Configuring a toolchain in Qt Creator

8. Click the Apply button in the bottom right corner to save these settings.

9. Click the Debuggers tab, then click the Add button on the right side.

30 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

The Options dialog displays additional fields at the bottom for configuring a new

debugger.

10. Fill in the debugger fields:

a. In the Name field, enter QNX SDP 6.6 GDB.

b. On the Path line, click Browse... to open the file selector. On Windows, navigate

to DEFAULT_SDP_PATH\host\win32\x86\usr\bin and choose ntoarmv7-

gdb.exe. On Linux, navigate to DEFAULT_SDP_PATH/host/lin

ux/x86/usr/bin and choose ntoarmv7-gdb. Click Select Folder to confirm

the setting.

11. Click the Apply button in the bottom right corner to save these settings.

12. Click the Kits tab, then click the Add button on the right side.

Copyright © 2014, QNX Software Systems Limited 31

Configuring a toolchain in Qt Creator

The Options dialog displays additional fields at the bottom for configuring a new

kit.

13. Fill in the kits fields:

a. Name the kit something meaningful, like QNX SDP 6.6 – OMAP5432.

b. In the Device Type dropdown list, select QNX Device.

c. In the Device dropdown list, select the device configured earlier (e.g.,

OMAP5432).

d. In the Compiler dropdown list, select QNX SDP 6.6 QCC.

e. In the Debugger dropdown list, select QNX SDP 6.6 GDB.

f. In the Qt version dropdown list, select Qt 5.2.0 (Qt520).

32 Copyright © 2014, QNX Software Systems Limited

Preparing your host system for Qt development

14. Click the OK button in the bottom right corner to save all the Build & Run settings.

After you've configured a QNX device and a toolchain, you can begin developing Qt

apps for QNX CAR 2.1! When creating Qt apps, you can select your Build & Run Kit

in the New Project wizard to use the build and run settings that you configured earlier.

Copyright © 2014, QNX Software Systems Limited 33

Configuring a toolchain in Qt Creator

Chapter 3
Creating and running Qt apps in QNX CAR systems

Qt Creator supports the entire Qt app lifecycle, from creating projects to defining

source files and other resources to deploying the app on a target QNX CAR system.

After it's installed on your target, you can run the app by tapping its icon in the Apps

Section screen.

The sections that follow provide a walkthrough of writing a Qt app, packaging it,

deploying it on a QNX CAR system, and then running it. Here, app refers to a Qt

program packaged as a BAR file, which makes it visible in the Apps Section screen

of the HMI. The steps for writing a more elaborate application (e.g., a new HMI) are

the same except for the packaging (because the application would not be packaged

as a BAR file).

Copyright © 2014, QNX Software Systems Limited 35

Creating a project for a new Qt App

The first step in creating a Qt App is to create a project in Qt Creator.

This section and the sections that follow show you how to write, package, and deploy

a “Hello World” application that can be displayed in the Apps Section screen of the

QNX CAR HMI. You must have QNX QDF and Qt Creator installed before you can create

such Qt apps; for instructions on installing and configuring these components, see

“Preparing your host system for Qt development (p. 15)”.

To create a Qt project:

1. Launch Qt Creator.

2. In the File menu, choose New File or Project...

3. In the Projects dialog, choose Other Projects, then Empty Qt Project, and then

click Choose...

Qt Creator displays the Empty Qt Project configuration dialog.

4. In the Location page, name the project QtApp, then click Next.

36 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

5. In the Kits page, choose the kit that you configured when setting up Qt Creator

(e.g., QNX SDP 6.6 – OMAP5432), then click Next.

For details on defining a kit (which specifies toolchain settings), see Step 13 (p.

32) in “Configuring a toolchain in Qt Creator”.

6. In the Summary page, click Finish to save your new project's settings.

Copyright © 2014, QNX Software Systems Limited 37

Creating a project for a new Qt App

Defining the user interface

You can define the UI by adding a QML file that declares the UI components to your

new project.

To define the UI:

1. Click the Edit icon on left side, right-click the QtApp folder in the Projects view,

then choose Add New...

2. In the New File dialog, select Qt in the Files and Classes list, then QML File

(Qt Quick 2.0) in the list of specific file types (shown in the middle), then

click Choose...

Qt Creator displays the New QML File (Qt Quick 2.0) configuration dialog.

3. In the Location page, name the file main, then click Next.

4. In the Summary page, click Finish.

The main.qml file is opened for editing.

5. Delete the default file content and replace it with the following:

import QtQuick 2.0

Rectangle {
 width: 360
 height: 360

38 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

 Text {
 text: qsTr("Hello World")
 anchors.centerIn: parent
 }
}

This QML code defines a simple UI consisting of a square box displaying Hello

World.

6. Save the file.

Copyright © 2014, QNX Software Systems Limited 39

Defining the user interface

Making a QML file into a project resource

You can create a Qt resource file that includes the QML file that defines the UI. After

you add this resource file to your project, Qt Creator will include the UI definition in

the binary file.

There are several ways to access resources in Qt apps running on a QNX CAR

system. In addition to compiling resources into their binaries, apps can access

resources from within their Blackberry ARchive (BAR) file package or from a

shared location on the target. It's also possible to use a mix of any of these

options. The best solution depends on the nature of the app.

To make the UI-defining QML file into a project resource:

1. Click the Edit icon on left side, right-click the QtApp folder in the Projects view,

then choose Add New...

2. In the New File dialog, select Qt in the Files and Classes list, then Qt Resource

file in the list of specific file types (shown in the middle), then click Choose...

Qt Creator displays the New Qt Resource file configuration dialog.

3. In the Location page, name the file resources, then click Next.

4. In the Summary page, click Finish.

A new file, resources.qrc, has been added to the project. The Qt Resources

Editor is open.

40 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

5. In the Projects view, select the resources.qrc file, then click Add in the

configuration area near the bottom, then choose Add Prefix.

6. In the Prefix field, replace the default text with ui.

7. Click Add again, then choose Add Files.

Qt Creator opens a file selector so you can navigate to the file you want to include

in the resource.

8. Select main.qml and click Open.

The main.qml file is stored in a Qt resource (.qrc) file, which means Qt Creator will

compile the QML file into the app binary file.

Copyright © 2014, QNX Software Systems Limited 41

Making a QML file into a project resource

Adding code to load the UI

The QML file defines how the UI looks but to display it when the Qt app starts, your

app must contain C++ source code that defines the application entry point and loads

the UI.

To add code that loads the UI:

1. In the Project view, right-click the QtApp folder and click Add New...

2. In the New File dialog, select C++ in the Files and Classes list, then C++ Source

file in the list of specific file types (shown in the middle), then click Choose...

3. In the Location page, name the file main, then click Next.

4. In the Summary page, click Finish.

The main.cpp file is opened for editing.

5. Copy and paste the following code into main.cpp:

#include <QtGui/QGuiApplication>
#include <QtQuick/QQuickView>

int main(int argc, char *argv[])
{
 QGuiApplication app(argc, argv);

 QQuickView view;
 view.setSource(QUrl("qrc:/ui/main.qml"));
 view.show();

 return app.exec();
}

In this code, the view loads the main.qml resource from the Qt resource file, and

then displays the UI. Note the syntax for accessing resources in a .qrc file, which

consists of the resource path prepended with qrc:. So, to access main.qml, the

view uses qrc:/ui/main.qml (because the prefix was defined as ui).

6. Open the QtApp.pro file for editing and add the following line at the end:

QT += quick

Because main.cpp includes the QtQuick/QQuickView header file, you must

tell Qt Creator to use the quick package.

7. Build the project by accessing the Build menu and clicking Build Project "QtApp".

42 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

Adding an image for the app icon

You can add an icon to your app by saving an image file in your project folder.

To add an image to use as the app icon:

1. Download the following image and save it as icon.png in the QtApp project

folder:

You can obtain this image from this location on Digia's website:

http://qt.digia.com/About-Us/Logos-for-Download/

You can also use any other appropriately sized image file as an icon. We suggest

the Qt logo image only for simplicity.

The icon gets packaged into the app's BAR file—it shouldn't be compiled

into resources.qrc.

Copyright © 2014, QNX Software Systems Limited 43

Adding an image for the app icon

http://qt.digia.com/About-Us/Logos-for-Download/

Writing the app descriptor file

To deploy a Qt app on a QNX CAR target, you must package the app in a BAR file.

The package must contain an app descriptor file, which is an XML file specifying

various configuration and application settings.

These instructions show how to define an app descriptor file using Qt Creator

but you can manually write this file using whatever editing tool you want.

To write an app descriptor file in Qt Creator:

1. Click the Edit icon on left side, right-click the QtApp folder in the Projects view,

then choose Add New...

2. In the New File dialog, select General in the Files and Classes list, then Text

file in the list of specific file types (shown in the middle), then click Choose...

Qt Creator displays the New Text file configuration dialog.

3. In the Location page, name the file bar-descriptor.xml, then click Next.

4. In the Summary page, click Finish.

The bar-descriptor.xml file is opened for editing.

5. Copy and paste the following content into the new file:

<?xml version='1.0' encoding='UTF-8' standalone='no'?>
<qnx xmlns="http://www.qnx.com/schemas/application/1.0">
 <name>Qt App</name>
 <description>The Hello World Qt demo app.</description>
 <icon>
 
 </icon>
 <id>com.mycompany.QtApp</id>
 <versionNumber>1.0.0</versionNumber>
 <buildId>1</buildId>
 <author>My Company Inc.</author>
 <initialWindow>
 <systemChrome>none</systemChrome>
 <transparent>false</transparent>
 </initialWindow>
 <permission system="true">run_native</permission>
 <action system="true">run_native</action>
 <env var="QQNX_PHYSICAL_SCREEN_SIZE" value="150,90"/>
 <asset type="Qnx/Elf" path="QtApp"
 entry="true">QtApp</asset>
</qnx>

The app-descriptor file provides the app name, description, icon file, and other

fields that contain authoring information and settings for the initial window. It also

sets the required QQNX_PHYSICAL_SCREEN_SIZE environment variable, which

defines the height and width of the app's display area on the screen. The

environment variables are set using <env> tags, as shown. Finally, the app

44 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

descriptor file must also provide the asset information, which includes the path

and format of the binary file.

QNX CAR environment variables

You can set environment variables specific to the QNX CAR platform in the app

descriptor file. These settings define the app's display area and its resource paths on

the target system.

The QNX CAR environment variables are:

QQNX_PHYSICAL_SCREEN_SIZE

(Required for all apps)

Defines the height and width of the app's display area on the screen. These

values are specified in millimeters, not pixels. This is because QNX CAR

requires a physical unit and not a virtual unit.

QNXCAR2_ASSETS_DIR

(Optional)

Specifies the path on the target system of any shared resources used by the

app. You can share resources among many apps to reduce the sizes of

individual apps; this is particularly useful for large resources (e.g., font files).

Also, shared resources don't have to be packaged into the app's BAR file or

compiled into its binary executable.

LD_LIBRARY_PATH

(Optional)

Specifies the path on the target system of any external libraries (i.e., libraries

outside of the Qt framework) used by the app. All QNX Qt development

libraries (e.g., QtQnxCar2) are located in /qtcar/lib/. You can install

third-party libraries to this same location or to another location. In the latter

case, you need to add the directory that stores these other libraries to the

LD_LIBRARY_PATH variable, using a colon (:) to separate the different

entries.

In the app descriptor file, environment variables are set using <env> tags, where the

var attribute lists the variable's name and the value attribute lists its value. For

instance, the following XML element sets the shared resources path:

<env var="QNXCAR2_ASSETS_DIR" value="qtcar/share"/>

Copyright © 2014, QNX Software Systems Limited 45

Writing the app descriptor file

XML elements in app descriptor file

The app descriptor file must specify the app ID, build ID, version number, a Qt binary

file for the entry point, and the physical size of the display area. The file can also

define fields such as an icon image file, author name, app name and description, and

more.

ExampleAttributesDescriptionRequiredName

<action sys

tem="true">run_na

tive</action>

system

(Required)

Specifies whether

the action is a

Specifies the actions associated with the

invocation target. Actions are strings that

identify the operations that your

application is registered to handle. For Qt

apps, you must include an <action> tag

with the value run_native, to run the

app using the OS runtime.

Yes<ac

tion>

system action and

not a user action. For

Qt apps, you must

set this attribute to

true.

<arg>-b -v</arg>Defines the arguments for configuring the

application when started. The order of the

No<arg>

arguments is important because they're

presented in the application's command

line in the same order listed in the app

descriptor file.

<aspectRatio>land

scape</aspectRatio>

Specifies whether the application displays

in landscape or portrait mode. If no value

is specified, the application uses the

default orientation set by the OS.

No<aspec

tRatio>

<asset type="Qnx/Elf"

path="QtApp" en
defaultexcludes

When yes, apply the

exclusion patterns to

Specifies an asset to package in the BAR

file. For Qt apps, you must include an

<asset> tag that names the Qt binary

that's the app entry point.

Any assets listed on the command line

override those specified with this tag. The

Yes<asset>

try="true">QtApp</as

set>
the directory tree.

For the list of

exclusion patterns,
text of the tag is a path relative to the

see the <asset>
BAR package root directory. You can also

element in the
use the dest attribute to specify the

application

descriptor file DTD.
asset—this is recommended when using

nested <exclude> and <include>

elements.

46 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/r_barfile_dtd_ref_asset.html
http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/r_barfile_dtd_ref_asset.html

ExampleAttributesDescriptionRequiredName

Unless otherwise noted, the attributes are

optional.

dest

The asset's

destination path.

Typically, the value

is the last part of the

path value (i.e., the

filename).

entry

When true, use the

asset to start the

application. The

default setting is

false.

path

(Required)

The location of the

asset relative to the

current working

directory of the

packager.

public

When true, store

the asset in the

public directory of

the BAR file, which

is readable by other

applications. Icon

assets should be

public. The default

setting is false.

type

The asset type. For

Qt binaries, use

Qnx/Elf.

<author>My Company

Inc.</author>

Specifies the author name (typically the

company or developer name).

No<au

thor>

Copyright © 2014, QNX Software Systems Limited 47

Writing the app descriptor file

ExampleAttributesDescriptionRequiredName

<autoOrients>false</au

toOrients>

Indicates whether the application

automatically reorients its content when

the physical orientation of the device

changes.

No<au

toOri

ents>

<buildId>1</buildId>Specifies the build identifier, which is an

integer between 0 and 65535. You modify

Yes, if

not

using

<buil

dId>

the value when you want the identifier to

change.<buil

dId

File>

<buildIdFile>build

num</buildIdFile>

Names the file that stores the build

identifier. This file is located in your

application root folder and it stores the

No<buil

dId

File>

build identifier as an integer. The

packager tool increments this value each

time you build the BAR package.

If you use this element, don't include the

<buildId> element.

The default file created by the Momentics

IDE is buildnum.

<description>The Hello

World Qt demo

app.</description>

Defines the text to display when the

application is installed. You can use

nested <text> elements to define text

for different languages and locales.

No<de

scrip

tion>

<env var="QQNX_PHYSI

CAL_SCREEN_SIZE" val

ue="150,90"/>

var

(Required)

Name of the

environment

variable.

Defines environment variable settings.

For Qt apps, you must define the

QQNX_PHYSICAL_SCREEN_SIZE variable

and you can defined others as well, as

explained in “QNX CAR environment

variables (p. 45)”.

Yes<env>

value

(Required)

Value of the

environment

variable.

48 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

ExampleAttributesDescriptionRequiredName

<asset path="Device-

Debug/FolderA"

name

(Required)

Specifies the files to exclude from the

BAR file based on a filter pattern defined

in the name attribute. This element is

nested within the <asset> tag.

No<ex

clude>

type="Qnx/Elf"

dest="HelloWorldDis

playManaged">

The string patterns

for filtering files

when excluding
<exclude

name="TEMP?.gif" />
them. Use the

following tokens to

match string values: </asset>

• Asterisk(*):

Matches zero or

more characters.

• Question mark

(?): Matches one

character.

• Double asterisk

(**): Matches

zero or more

directories or

folders.

See the <invoke-target>

(p. 51) element.

Specifies a target filter. This element is

nested within the <invoke-target>

element.

For each target, filters must be declared

to describe the kinds of unbound

No<fil

ter>

invocations that it supports. Each filter

defines an action to perform for MIME

types that match the filter.

Unbound invocations should generally

provide an action, but must provide either

a MIME type, URI, or both. They may also

define properties, which are sent to the

invocation target.

See the 
that you use conventions such as a

reverse-DNS name.

This element can contain the following

elements:

</icon>

<splashScreens>



• <filter>

• <icon>

</splashScreens>• <invoke-target-name>

• <invoke-target-type>
<filter>

• <splashScreens>

<action>bb.ac

tion.VIEW</action>

<mime-type>applica

tion/pdf</mime-type>

<mime-type>applica

tion/x-pdf</mime-type>

<property var="saveOn

Close" value="true"/>

Copyright © 2014, QNX Software Systems Limited 51

Writing the app descriptor file

ExampleAttributesDescriptionRequiredName

</filter>

</invoke-target>

See the <invoke-target>

(p. 51) element.

Defines the text to display in the UI. If

this value isn't specified, the application

name (i.e., the value in <name>) will be

displayed.

No<in

voke-

target-

name>

See the <invoke-target>

(p. 51) element.

Defines the target type. The supported

types are:

No<in

voke-

target-

type>
application

The target is an application and

is started only when required.

viewer

The target reference always

spawns a new window and

window reparenting is required.

See the <invoke-target>

(p. 51) element.

The MIME type of the data that the

invocation target can process. This

element is nested within the <filter>

No<mime-

type>

element. The grammar for the MIME type

must support these specifications:

• RFC 2045 (content-types)

• RFC 4288 (IANA registration)

<name>Qt App</name>Defines the string value to display when

the app is installed. This UTF-8 value can

be at most 25 characters.

No<name>

<packageLocale>en-

US,de_DE,fr_CA</pack

ageLocale>

Lists the locales supported by the

application. The values given must be

defined in the IETF Best Current Practice

(BCP) 47 specification. You can use a

No<pack

ageLo

cale>

comma-delimited list of locales to specify

more than one.

52 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

ExampleAttributesDescriptionRequiredName

<permission sys

tem="true">run_na

tive</permission>

system

(Required)

Specifies whether

the action is a

Specifies the privileges (also known as

capabilities, user actions, or actions) that

the application requests from the OS. For

Qt apps, you must include a <permis

sion> tag with the value run_native,

to run the app using the OS runtime.

The list of permission settings relevant to

Qt apps is given in “App permissions (p.

55)”.

Yes<permis

sion>

system action and

not a user action. For

Qt apps, you must

set this attribute to

true.

<platformArchitec

ture>x86</platformAr

chitecture>

Specifies the processor architecture that

the application is compiled for. If you

don't specify a value, the Momentics IDE

inspects the binary to determine the

value.

You can use the following values:

No<plat

formAr

chitec

ture>

x86

Specifies to compile your

application to run on a

simulator.

armle-v7

Specifies to build the

application to run on a device.

<platformVer

sion>10.2.0.155</plat

formVersion>

Lists the locales supported by the

application. The values given must be

defined in the IETF Best Current Practice

(BCP) 47 specification. You can use a

No<plat

formVer

sion>

comma-delimited list of locales to list

more than one.

See the <invoke-target>

(p. 51) element.
var

(Required)

Specifies additional arguments to send

to an invocation target. This element is

nested within the <filter> element.

No<proper

ty>

Name of the

property.

value

(Required)

Copyright © 2014, QNX Software Systems Limited 53

Writing the app descriptor file

ExampleAttributesDescriptionRequiredName

Value of the

property.

See the example of the app

descriptor file in “Writing the

app descriptor file (p. 44)”.

xmlns

(Optional)

URL reference to the

XML namespace.

Defines the top-level element of the

schema used for the app descriptor file.

Yes<qnx>

<splashScreens>
Contains 

</splashScreens>

<splashscreen>
Specifies the image file to display when

the app is launching. You can use the

No<splash

screen>
sample-splashscreen-

landscape.png:sample-
<text> element to specify different

images for different languages and
splashscreen-por

trait.png
locales. This file must be a PNG or JPG

file with resolution sizes of 1024 x 600

pixels (landscape) or 600 x 1024 <text xml:lang="de-

DE">sample-splash (portrait). The image can be in the

application root folder or in a folder

accessible from the root.
screen-land

scapeDE.png:sample-

splashscreen-por

traitDE.png</text>

</splashscreen>

See the <initialWindow>

(p. 50) element.

When standard, the initial application

window is displayed with the standard

system chrome (i.e., title bar, borders,

No<system

Chrome>

and controls) provided by the OS. When

none, no system chrome is displayed.

This setting can't be changed at run time.

54 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

ExampleAttributesDescriptionRequiredName

<description>The Hello

World Qt demo app.

xml:lang

(Required)

Specifies text for the parent <name> and

<description> elements, to support

different languages and locales. You can

No<text>

<text xml:lang="de-

DE">The German descrip
The language or

locale code. The

also use this element to specify multiple

image files for the <image> and

<splashscreen> elements. tion for the Hello

World Qt demo

app.</text>

XML locale strings

use hyphens per the

IETF Best Current

</description>Practice (BCP) 47

specification. For

example, you can

use en-US (United

States English),

de-DE (German), or

fr-CA (Canadian

French).

See the <initialWindow>

(p. 50) element.

Specifies whether the initial application

window is alpha-blended with the

background. The use of transparency can

No<trans

parent>

slow down rendering and consume more

memory. The transparency setting can't

be changed at run time and is valid only

when the <systemChrome> element is

set to none.

<versionNum

ber>1.0.0</versionNum

ber>

Specifies the app version as a string in

the format <0-999>.<0-999>.<0-

999>. The version is useful for

determining whether the application

Yes<ver

sionNum

ber>

requires an upgrade. The value can be a

one-, two-, or three-part value, such as 1,

1.0, or 1.0.0.

App permissions

With the <permission> element in the app descriptor file, you can list the

permissions you want the OS to grant your application.

The following permissions can be granted:

Copyright © 2014, QNX Software Systems Limited 55

Writing the app descriptor file

DescriptionPermission element

value

Functionality or

capability

Allows the app to connect to BlackBerry Messenger (BBM). This

permission also allows the app to view contact lists and user profiles,

bbm_connectBlackBerry

messenger

invite BBM contacts to download the app, initiate BBM chats, share

content from within the app, and stream data between apps in real

time.

Grants the app access to the calendar. You must set this permission

to view, add, and delete calendar appointments.

access_pimdo

main_calendars

Calendar

Allows the app to access data from cameras attached to the system.

This permission is required to take pictures, record video, and use the

camera flash.

use_cameraCamera

Allows the app to take screenshots or videos of the user's screen.use_camera_desk

top

Capture Screen

Grants the app access to the contacts stored on the system. You must

set this permission to view, create, and delete contacts.

access_pimdo

main_contacts

Contacts

Allows the app to modify global notification settings. By default, apps

have permission to read only their own notification settings.

access_notify_set

tings_control

Control

Notification

Settings
This permission doesn't appear on the Applications tab in the

IDE. You must add the permission manually on the Source

tab.

Grants the app access to unique system identifiers such as the PIN

and serial number. By setting this permission, you can also access

SIM card information.

read_device_iden

tifying_informa

tion

Device Identifying

Information

Allows the app to access the email and PIN messages stored on the

device. This permission is required to view, create, send, and delete

email and PIN messages.

access_pimdo

main_messages

Email and PIN

Messages

Indicates that the app supports gamepad functionality and that it has

official gamepad support in the BlackBerry World storefront.

use_gamepadGamepad

Allows the app to use an Internet connection from a Wi-Fi, wired, or

other connection. This permission is required to access a nonlocal

destination.

access_internetInternet

Grants the app access to the system's current location and any saved

access locations. You must set this permission to access geolocation

access_loca

tion_services

Location

data, information for geofencing, cell tower information, Wi-Fi data,

and Cascades Places.

56 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

DescriptionPermission element

value

Functionality or

capability

Grants the app access to the audio stream from a microphone attached

to the system.

record_audioMicrophone

Grants the app access to user information such as the first and last

names.

read_personal

ly_identifi

able_information

My Contact Info

Grants the app access to the content stored in the notebooks on the

system. This permission is required to view, add, and delete entries

and content from notebooks.

access_pimdo

main_notebooks

Notebooks

Allows the app to determine when a user is on a phone call and to

access the phone number assigned to the device and send DTMF (Dual

Tone Multi-Frequency) tones.

access_phonePhone

Allows the app to combine two calls together, end a call, and use the

dial pad during a call.

control_phonePhone Control

Allows the app to post notifications. This permission doesn't require

the user to grant your app access and is granted by the OS when

requested.

post_notificationPost Notifications

Allows the app to use the BlackBerry Push Service with the BlackBerry

Internet Service to receive and request push messages. To use these

_sys_use_con

sumer_push

Push

two services together, you must register with BlackBerry. When you

register, you will receive a confirmation email containing information

that the application needs to receive and request push messages. For

more information about registering, see the Push Service page on the

public BlackBerry website.

When using the Push Service with the BlackBerry Enterprise Server or

the BlackBerry Device Service, you don't need to register with

BlackBerry and you must not set the Push permission for your app.

Allows the app to perform background processing. Without this

permission, the app will be stopped when you switch focus to another

run_when_back

grounded

Run as Active

Frame

app. Use this permission sparingly and only when the app must perform

background processing.

This permission is useful for apps that play music or manage

downloads.

Copyright © 2014, QNX Software Systems Limited 57

Writing the app descriptor file

http://developer.blackberry.com/services/push/

DescriptionPermission element

value

Functionality or

capability

Allows the app to perform tasks in the background for a short period

of time without opening the app.

_sys_run_headlessRun in

Background

This permission doesn't appear on the Applications tab in the

IDE. You must add the permission manually on the Source

tab.

Allows the app to run in the background at all times._sys_headless_nos

top

Run in

Background

Continuously This permission doesn't appear on the Applications tab in the

IDE. You must add the permission manually on the Source

tab.

Allows the app to read and write files shared between all apps. With

this permission set, the app can access pictures, music, documents,

access_sharedShared Files

and other files stored on the local system, at a remote storage provider,

on a media card, or in the cloud.

Grants the app access to text messages stored on the local system.

You must set this permission to view, create, send, receive, and delete

text messages.

access_sms_mmsText Messages

Allows the app to receive Wi-Fi event notifications such as Wi-Fi scan

results or changes in the Wi-Fi connection state. This permission also

access_wifi_pub

lic

Wi-Fi Connection

allows limited Wi-Fi control for hotspot aggregator applications that

manage network selection and authentication to a Wi-Fi Hotspot.

This permission doesn't allow the app to force a connection to a specific

network profile when other available networks with a higher priority are

configured for the system. It's not necessary to configure this permission

if you only want to retrieve or query information about existing Wi-Fi

connections.

This permission doesn't appear on the Applications tab in the

IDE. You must add the permission manually on the Source

tab.

58 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

Packaging the app into a BAR file from Qt Creator

After defining the app descriptor file, you can generate a BAR file that contains the

app's binary and icon file. The BAR package will be used by the target system to install

the app.

These instructions show how to produce a BAR file as a custom build step in Qt Creator,

but you can also generate a BAR file from the command line (p. 62). BAR files are

created by the blackberry-nativepackager tool, which is part of the QNX SDK

for Apps and Media installation on your host system.

To package the app into a BAR file from Qt Creator:

1. Click the Projects icon on left side, select the Build & Run tab, click Add Build

Step, then select Custom Process Step:

2. On the line that reads Command, click Browse....

Copyright © 2014, QNX Software Systems Limited 59

Packaging the app into a BAR file from Qt Creator

3. In the file selector dialog, navigate to DE

FAULT_SDP_PATH\host\win32\x86\usr\bin and choose

blackberry-nativepackager.bat (on Windows) or navigate to DE

FAULT_SDP_PATH/host/linux/x86/usr/bin and choose

blackberry-nativepackager (on Linux).

4. On the line that reads Arguments, enter:

QtApp.bar %{sourceDir}\bar-descriptor.xml QtApp –C %{sourceDir}
 %{sourceDir}\icon.png

These arguments tell the packaging utility to create a file named QtApp.bar using

the information in bar-descriptor.xml and to include QtApp (the binary) and

icon.png in the root folder of the BAR file. For the list of all command options

applicable to Qt apps, see “Qt command-line options for blackberry-nativepackager

(p. 63)”.

This step makes Qt Creator run the blackberry-nativepackager command

as a build step. Every time you recompile the application, the binary is repackaged

into a BAR file.

5. Scroll down to the Build Environment section, locate the Use System Environment

entry, then click Details (on the right side).

6. In the list of environment variables, locate PATH and if necessary, add the path

to the host system's java.exe location to the variable's value.

60 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

You can modify the variable's value by clicking the variable name in the display

area, clicking Edit in the upper right area, and then entering the new value.

The Qt Creator build environment must be configured to find java.exe because

the blackberry-nativepackager command runs a batch file that calls a Java

program.

7. Click the Edit icon on the left side to return to the editing view, select the Build

menu, then choose Build Project "QtApp".

Qt Creator builds the QtApp project by compiling the UI-defining QML file into

the binary, then generates the BAR file by running the configured packaging

command. The IDE displays timestamped messages detailing the outcomes of the

build steps in the Console Output window.

Copyright © 2014, QNX Software Systems Limited 61

Packaging the app into a BAR file from Qt Creator

The QtApp app is packaged in a BAR file and can now be deployed on your target

system.

Packaging the BAR file from the command line

You can run the blackberry-nativepackager tool from the command line.

Before running the packaging command, ensure that you have:

• The app descriptor file. This XML file must be written manually, whether in

Qt Creator or another editor.

• The binary generated by building your Qt app.

• Any resources (statically linked libraries, QML files, icons, etc...) used by the binary.

You can compile some resources into the binary or a library linked to the binary.

If you choose to do this, you don't need to list those resources on the packaging

command line.

The command-line process for packaging a Qt app is similar to the process of

“Packaging a native C/C++ app for installation” described in the Application and

Window Management guide. The key differences are the QNX CAR environment

variables (p. 45) you can define in the app descriptor file for a Qt app.

To package a Qt app into a BAR file from the command line:

1. In a QNX Neutrino terminal, navigate to the location where your Qt app is stored,

then enter the command line to package the app, in this format:

blackberry-nativepackager [<commands>] [<options>] bar-package
app-descriptor binary-file [resource-file]*

You must list the BAR file first, followed by the app descriptor file, and then the

app files (which must include the binary) to store in the package. Otherwise, the

command-line argument order is flexible; you can list the app files in any order

and place commands and options at any location in the command line.

The exact name and location of the packaging tool and its command syntax is

platform-dependent. On Linux, the tool is called blackberry-nativepackager

and is stored in DEFAULT_SDP_PATH/host/linux/x86/usr/bin/. Any

filepaths in the command line must use POSIX notation, using a forward slash (/)

to indicate directories. On Windows, it's called blackberry-nativepack

ager.bat and is stored in DEFAULT_SDP_PATH\host\win32\x86\usr\bin.

The command-line filepaths must follow the Windows convention, using a backslash

(\) to indicate folders.

Consider the following packaging command line for a Windows host:

blackberry-nativepackager.bat -package AngryBirds.bar -devMode
 birds_bar-descriptor.xml bin/angrybirds a_birds1.png

62 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

This command generates a BAR file named AngryBirds.bar based on the

birds_bar-descriptor.xml file. The BAR file contains the app's binary file

(whose path is bin/angrybirds) and its icon file (a_birds1.png). For details

on the -package and -devMode options and all other command options applicable

to packaging Qt apps, see “Qt command-line options for blackberry-nativepackager

(p. 63)”.

After your app is packaged, you can deploy it on the target, as explained in “Deploying

the BAR file on the target (p. 66)”.

Qt command-line options for blackberry-nativepackager

The blackberry-nativepackager command line must name the BAR file, app

descriptor file, and Qt binary. The packaging tool allows you to list other files to include

in the package and supports many command-line options for Qt apps.

Syntax:

blackberry-nativepackager [<commands>] [<options>] bar-package
app-descriptor binary-file [resource-file]*

Commands:

-package

Package the assets into an unsigned BAR file (this is the default behavior).

-list

List all the files in the resulting package. This is useful for debugging

packaging issues.

-listManifest

Print the BAR manifest. This is useful for debugging.

Packaging options:

-buildId ID

Set the build ID (which is the fourth segment of the version). Must be a

number from 0 to 65535.

-buildIdFile file

Set the build ID from an existing file and save a new, incremented version

to the same file.

-devMode

Copyright © 2014, QNX Software Systems Limited 63

Packaging the app into a BAR file from Qt Creator

Package the BAR file in development mode. This is required to run unsigned

applications and to access application data remotely.

Path options:

-C dir

Use dir as a root directory. All files listed after this option will be used with

tail paths in the output package.

-e file path

Save a file to the specified path in the package.

Other options:

-version

Print the packaging tool version.

help-advanced

Print the advanced options.

-help

Print the usage information. This will include other command-line options

and commands that aren't listed here but don't apply to Qt apps.

Variables:

bar-package

Path of the output BAR package file.

app-descriptor

Path of the app descriptor file.

binary-file

Path of the Qt binary file.

resource-file

Path of a resource file used by the Qt app. This could be an icon, a font

definition file, an image, and so on. You can name as many resource files

as you want.

64 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

These paths can be absolute or relative to the current directory. The resulting

location in the package is a tail path of the file, unless overridden by the -C

or -e options.

Example:

The command line shown below packages the Settings app from the Qt5 HMI. The

app binary, icon file, and several images from installed UI themes are included in the

BAR file (QtSettingsApp.bar), which is generated based on the app descriptor

file (settings-descriptor.xml):

blackberry-nativepackager.bat -package QtSettingsApp.bar -devMode settings-descriptor.xml
 -e %1\bin\settingsapp bin/settingsapp settings_icon.png
 -C %1\ %1\lib\ %1\share\qnxcar2\palettes\
 %1\share\qnxcar2\fonts\
 %1\share\qnxcar2\qml\main.qml
 %1\share\settingsapp\
 %1\share\qnxcar2\images\themes\720p\default\Settings\
 %1\share\qnxcar2\images\themes\720p\midnightblue\Settings\
 %1\share\qnxcar2\images\themes\800x480\default\Settings\
 %1\share\qnxcar2\images\themes\800x480\midnightblue\Settings\
 %1\share\qnxcar2\images\themes\800x480\titanium\Settings\
 %1\share\qnxcar2\images\themes\720p\default\CommonResources\
 %1\share\qnxcar2\images\themes\720p\midnightblue\CommonResources\
 %1\share\qnxcar2\images\themes\800x480\default\CommonResources\
 %1\share\qnxcar2\images\themes\800x480\midnightblue\CommonResources\
 %1\share\qnxcar2\images\themes\800x480\titanium\CommonResources\

In the actual command line, %1 is replaced with the path of the source directory

containing the compiled Qt code. The -e and -C options take arguments, so the

command-line tokens following these options refer to the files affected by them. Here,

the -e option tells the packaging tool to store the app binary (which is located at

%1\bin\settingsapp on the host system) at bin/settingsapp in the output

package. The -C option removes the %1 folder from the paths of the subsequently

named files. For example, the files in %1\lib on the host system get placed in /lib

in the package.

Copyright © 2014, QNX Software Systems Limited 65

Packaging the app into a BAR file from Qt Creator

Deploying the BAR file on the target

Before you can run an app on the target system, you must copy the app's BAR file to

a temporary location on the target and then run the installation script to set up the

app. You can configure Qt Creator to automate deploying the BAR file and installing

the app.

The steps shown here define commands for Qt Creator to issue to the target as part

of the deployment process, automating part of the app development process for

convenience. You could also issue these commands manually through a QNX Neutrino

terminal connected to the target and the result would be the same.

To deploy an app on the target from Qt Creator:

1. Open the project file (QtApp.pro) for editing and add the following lines to the

end:

barfile.path = /var/tmp
barfile.files = $$OUT_PWD/QtApp.bar
INSTALLS += barfile

This addition to the INSTALLS command instructs Qt Creator to copy QtApp.bar

to /var/tmp on the target. The target is represented in Qt Creator as a QNX device,

as explained in “Configuring a QNX device in Qt Creator (p. 19)”.

2. Click the Projects icon on left side, select the Build & Run tab, click the Add Deploy

Step button, then choose Run custom remote command.

66 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

3. On the line that reads Run custom remote command, click the “Move up”

button (which has an arrowhead pointing upwards), to ensure that this step is done

before the Upload files via SFTP step.

Copyright © 2014, QNX Software Systems Limited 67

Deploying the BAR file on the target

4. In the Command Line text field under Run custom remote command, enter

the line:

mount –uw /base

By default, a QNX CAR image has a read-only filesystem. This command makes

the filesystem writable, which is necessary to successfully upload files.

5. Click Add Deploy Step again, choose Run custom remote command, and enter

the following command:

/base/scripts/bar-install /var/tmp/QtApp.bar

This command runs the installer on the target, installing the BAR package in the

Apps section of the QNX CAR HMI.

You should now have the following four deployment steps (where the first two were

predefined):

1. Check for a configured device (default)

2. Run custom remote command: "mount -uw /base"

3. Upload files via SFTP (default)

68 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

4. Run custom remote command: "/base/scripts/bar-install

/var/tmp/QtApp.bar"

6. Click the Edit icon on the left side, select the Build menu, then choose Deploy

Project "QtApp".

Qt Creator performs the configured deployment steps, first copying the BAR file to

the specified target location, and then running the installer script to unpackage

the app so it's visible in the Apps section. The IDE displays timestamped messages

detailing the outcomes of the deployment steps in the Console Output window.

Copyright © 2014, QNX Software Systems Limited 69

Deploying the BAR file on the target

Running the app

After you've unpackaged the app's BAR file on the target, you can run the app from

the Apps Section screen in the target HMI.

To run the app on the target:

1. Switch to the Apps Section screen in the HMI.

You should see the QtApp icon displayed in the list of installed apps:

2. Tap the QtApp icon to launch the app.

QtApp launches. You should see the app's basic UI, consisting of the “Hello World”

message:

70 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

If you specify a splashscreen image with the <splashscreen> tag in the app

descriptor file, the splashscreen is displayed while the app loads. After it loads,

the app displays its initial window based on any properties you configured in the

<initialWindow> tag, within the physical area defined by the mandatory

QQNX_PHYSICAL_SCREEN_SIZE environment variable (also set in the app

descriptor file).

Copyright © 2014, QNX Software Systems Limited 71

Running the app

Cleaning the target before redeploying a BAR file

After an app's BAR file has been deployed on the target, we recommend uninstalling

the app before redeploying and reinstalling it. You can do this in Qt Creator by creating

a second deployment configuration to clean the app's installation on the target.

You can also issue these commands manually through a QNX Neutrino terminal

connected to the target and the result will be the same.

To clean an app's installation on the target:

1. Click the Projects icon on left side, select the Build & Run tab, click the Add button

in the line that reads Method, then choose Deploy to QNX Device.

2. Click the Rename... button on the same line, change the name to Clean QNX

Device, then click OK.

3. Remove the Upload files via SFTP step by hovering over the item and clicking

the removal button, which is marked with an X.

72 Copyright © 2014, QNX Software Systems Limited

Creating and running Qt apps in QNX CAR systems

4. Click the Add Deploy Step button, then choose Run custom remote command.

5. In the Command Line text field, enter the line:

/base/scripts/bar-uninstall com.mycompany.QtApp

To uninstall an app, you must provide its ID, which is found in the app descriptor

file. For the QtApp project, the ID (com.mycompany.QtApp) is specified in the

fourth element listed inside the root <qnx> element in bar-descriptor.xml.

There are now two deployment methods. You must choose either Deploy to QNX

Device or Clean QNX Device from the Method dropdown menu before running

Deploy Project "QtApp" in the Build menu. To deploy the BAR file and install

the app, switch to Deploy to QNX Device before running the deployment step.

To clean the app's installation on the target, choose Clean QNX Device before

redeploying the app.

Copyright © 2014, QNX Software Systems Limited 73

Cleaning the target before redeploying a BAR file

Chapter 4
QPPS API

The QPPS library API provides a Qt5 interface to access and update the PPS objects

used by QNX CAR platform services. This Qt5 interface replaces the standard PPS

interface, which is based on POSIX system calls.

Your apps can create Object instances in the QPPS API to access the PPS objects

used by platform services. When defining an Object instance, you must provide the

filesystem path of the underlying PPS object that you want to access. Then, you can

update and retrieve attributes in that PPS object.

An Object emits signals when one attribute has been updated, several attributes

have been updated atomically, or the underlying PPS object has been deleted. Each

set of atomic attribute updates is stored in a Changeset structure.

To accommodate different types of attributes, the Variant class lets you store

attribute values as strings, numeric types, Booleans, JSON data, or binary data.

The DirWatcher class allows you to monitor the PPS objects in a directory. A

DirWatcher emits signals when objects are added to or removed from the directory.

Finally, the library can be built in simulator mode, in which all PPS object reads and

writes are handled by the simulator; no filesystem objects are created. This mode is

useful on development systems that have no PPS service. You can use the Object

instances as usual, but also use the Simulator object to simulate platform services

that add, update, and remove PPS attributes and objects.

All classes in the QPPS API are defined within the QPps namespace. If your

app uses other classes with names matching the QPPS classes, your code must

explicitly refer to the QPPS classes by listing the namespace in front of the

class (e.g., QPps::Object).

Copyright © 2014, QNX Software Systems Limited 75

Changeset

All attribute assignments and removals either being made or that have been made to

the PPS object.

Synopsis:

#include <qpps/changeset.h>

namespace QPps
{
 struct Changeset {
 QMap< QString, Variant > assignments;
 QSet< QString > removals;
 };
}

Data:

QMap< QString, Variant > assignments

The attribute assignments.

QSet< QString > removals

The attribute removals.

Library:

libqpps

Description:

All attribute assignments and removals either being made or that have been made to

the PPS object.

76 Copyright © 2014, QNX Software Systems Limited

QPPS API

DirWatcher

Watches object additions and removals in a directory.

Synopsis:

#include <qpps/dirwatcher.h>

namespace QPps
{
 class QPPS_EXPORT DirWatcher : public QObject
 {
 Q_OBJECT

 public:

 explicit DirWatcher(const QString &path,
 QObject *parent = 0);

 ~DirWatcher();

 bool isValid() const;

 QString errorString() const;

 QString path() const;

 QStringList objectNames() const;

 Q_SIGNALS:

 void objectAdded(const QString &name);

 void objectRemoved(const QString &name);

 };
}

Library:

libqpps

Description:

Watches object additions and removals in a directory. The DirWatcher class uses a

feature of the PPS service to monitor object additions and removals at specific paths.

Also, this class can list the current objects in a particular directory and can signal

object additions and removals.

Copyright © 2014, QNX Software Systems Limited 77

DirWatcher

Public functions in DirWatcher

Functions defined in the DirWatcher class for creating monitors of PPS objects at

specific paths, for retrieving the names of the PPS objects and the paths being

monitored, and for troubleshooting.

DirWatcher()

Create a DirWatcher to watch object additions and removals in a directory.

Synopsis:

#include <qpps/dirwatcher.h>

DirWatcher(const QString &path,
 QObject *parent = 0);

Arguments:

path

The path of the directory being watched.

parent

A reference to the parent QObject. This parameter lets you link a

DirWatcher to a QObject (or a subtype) so the new child object gets

deleted when its parent is deleted. By default, no parent is assigned.

Description:

Create a DirWatcher to watch object additions and removals in a directory.

~DirWatcher()

Destroy the DirWatcher.

Synopsis:

#include <qpps/dirwatcher.h>

~DirWatcher();

Description:

Destroy the DirWatcher.

78 Copyright © 2014, QNX Software Systems Limited

QPPS API

errorString()

Return a string describing the last error, if any.

Synopsis:

#include <qpps/dirwatcher.h>

QString errorString() const;

Description:

Return a string describing the last error, if any.

Returns:

A description of the last error, if any.

isValid()

Check if the DirWatcher is valid.

Synopsis:

#include <qpps/dirwatcher.h>

bool isValid() const;

Description:

Check if the DirWatcher is valid.

Returns:

Returns true if the DirWatcher was opened successfully and no error occurred in

the meantime, false otherwise.

objectNames()

Return the names of all objects in the watched directory.

Synopsis:

#include <qpps/dirwatcher.h>

QStringList objectNames() const;

Description:

Return the names of all objects in the watched directory.

Copyright © 2014, QNX Software Systems Limited 79

DirWatcher

Returns:

A QStringList containing the names of all objects in the watched directory.

path()

Return the path of the directory being watched.

Synopsis:

#include <qpps/dirwatcher.h>

QString path() const;

Description:

Return the path of the directory being watched.

Returns:

A QString containing the path of the directory being watched.

Signals in DirWatcher

Signals emitted by DirWatcher objects for indicating object additions and removals.

objectAdded()

Emitted when an object was added to the watched directory.

Synopsis:

#include <qpps/dirwatcher.h>

void objectAdded(const QString &name);

Arguments:

name

The name of the object added to the directory.

Description:

Emitted when an object was added to the watched directory.

80 Copyright © 2014, QNX Software Systems Limited

QPPS API

objectRemoved()

Emitted when an object was removed from the watched directory.

Synopsis:

#include <qpps/dirwatcher.h>

void objectRemoved(const QString &name);

Arguments:

name

The name of the object removed from the directory.

Description:

Emitted when an object was removed from the watched directory.

Copyright © 2014, QNX Software Systems Limited 81

DirWatcher

Object

Represents PPS objects in the /pps filepath.

Synopsis:

#include <qpps/object.h>

namespace QPps
{
 class QPPS_EXPORT Object : public QObject
 {
 Q_OBJECT

 public:

 enum PublicationMode
 {
 PublishMode = 0,
 SubscribeMode,
 PublishAndSubscribeMode
 };

 explicit Object(const QString &path,
 PublicationMode mode =
 PublishAndSubscribeMode,
 bool create = false,
 QObject *parent = 0);

 ~Object();

 bool attributeCacheEnabled() const;

 void setAttributeCacheEnabled(bool cacheEnabled);

 bool isValid() const;

 QString errorString() const;

 QString path() const;

 Variant attribute(const QString &name,
 const Variant &defaultValue =
 Variant()) const;

 QStringList attributeNames() const;

 bool setAttributes(const Changeset &changes);

 Q_SIGNALS:

 void attributesChanged(
 const QPps::Changeset &changes);

 void attributeChanged(const QString &name,
 const QPps::Variant &value);

 void attributeRemoved(const QString &name);

82 Copyright © 2014, QNX Software Systems Limited

QPPS API

 void objectRemoved();

 public Q_SLOTS:

 bool setAttribute(const QString &name,
 const QPps::Variant &value);

 bool removeAttribute(const QString &name);

 };
}

Library:

libqpps

Description:

Represents PPS objects in the /pps filepath. The Object class communicates with

these filesystem objects so you can work with PPS at the level of objects and attributes

instead of POSIX system calls.

Each PPS object holds key-value pairs called attributes, which store the object's state.

By default, the state is saved across reboots. The PPS service provides mechanisms

for changing object attributes and sending notifications of attribute changes. The

Object class uses these mechanisms and provides methods to set one or many

attributes at a time and also emits signals containing information on attribute updates

or removals.

Public functions in Object

Functions defined in the Object class for creating data types that access PPS objects,

for setting and getting attributes in those objects, for enabling or disabling attribute

caching, and for troubleshooting.

attribute()

Return the value of an attribute or a default value if no such attribute is known.

Synopsis:

#include <qpps/object.h>

Variant attribute(
 const QString &name,
 const Variant &defaultValue = Variant()) const;

Arguments:

name

The attribute being read.

Copyright © 2014, QNX Software Systems Limited 83

Object

defaultValue

The default value to return if the attribute isn't found. If you don't define

defaultValue and the attribute isn't found, an empty Variant is returned.

Description:

Return the value of an attribute or a default value if no such attribute is known.

Returns:

Returns a Variant containing the attribute's value, when the attribute was found.

Otherwise, the Variant contains the specified default value or is empty (if no default

value was specified).

attributeCacheEnabled()

Get the attribute caching status.

Synopsis:

#include <qpps/object.h>

bool attributeCacheEnabled() const;

Description:

Get the attribute caching status.

Returns:

The function returns true just before an attributeChanged() signal is emitted, when

attribute names and values are cached internally for later querying through

attributeNames() and attribute(). It returns false when no caching takes place. By

default, attribute caching is disabled.

attributeNames()

Return the names of all known attributes in the PPS object.

Synopsis:

#include <qpps/object.h>

QStringList attributeNames() const;

Description:

Return the names of all known attributes in the PPS object.

84 Copyright © 2014, QNX Software Systems Limited

QPPS API

Returns:

A list of all known attributes.

errorString()

Return a string describing the last error, if any.

Synopsis:

#include <qpps/object.h>

QString errorString() const;

Description:

Return a string describing the last error, if any.

Returns:

A description of the last error, if any.

isValid()

Check if the PPS object was opened successfully and no error occurred in the

meantime.

Synopsis:

#include <qpps/object.h>

bool isValid() const;

Description:

Check if the PPS object was opened successfully and no error occurred in the

meantime.

Returns:

Returns true if the PPS object is open and no error has occurred, false otherwise.

Object()

Create an Object representing a PPS object.

Synopsis:

#include <qpps/object.h>

explicit Object(const QString &path,
 PublicationMode mode =
 PublishAndSubscribeMode,

Copyright © 2014, QNX Software Systems Limited 85

Object

 bool create = false,
 QObject *parent = 0);

Arguments:

path

The path of the PPS object.

mode

The mode of interaction between the application and the PPS object (by

default, PublishAndSubscribeMode).

create

When true, the PPS object will be created if it doesn't exist; when false,

the object won't be created and an error will be set (if the object doesn't

exist). By default, this setting is false.

parent

A reference to the parent QObject. This parameter lets you link an Object

to a QObject (or a subtype) so the new child object gets deleted when its

parent is deleted. By default, no parent is assigned.

Description:

Create an Object representing the PPS object located at path. The constructor accepts

optional arguments for specifying the PublicationMode (p. 88), which indicates

the direction of information flow between the application and the PPS object, and a

create flag, which tells the library whether or not to create the PPS object if it doesn't

exist. It also accepts an argument for a parent QObject, to link the new Object to

that other QObject.

~Object()

Destroy the Object.

Synopsis:

#include <qpps/object.h>

~Object();

Description:

Destroy the Object. This method is the destructor for the Object class.

86 Copyright © 2014, QNX Software Systems Limited

QPPS API

path()

Return the path of the underlying PPS object.

Synopsis:

#include <qpps/object.h>

QString path() const;

Description:

Return the path of the underlying PPS object.

Returns:

The path of the PPS object.

setAttributeCacheEnabled()

Enable or disable attribute caching.

Synopsis:

#include <qpps/object.h>

void setAttributeCacheEnabled(bool cacheEnabled);

Arguments:

cacheEnabled

When true, attribute changes will be cached internally for later querying

through attributeNames() and attribute(). When false, no caching will take

place and all previously cached attributes are discarded.

Description:

Enable or disable attribute caching.

setAttributes()

Write a set of attribute assignments and removals atomically.

Synopsis:

#include <qpps/object.h>

bool setAttributes(const Changeset &changes);

Arguments:

Copyright © 2014, QNX Software Systems Limited 87

Object

changes

A Changeset (p. 76) listing all requested attribute assignments and

removals.

Description:

Write a set of attribute assignments and removals atomically. This way, subscribers

won't see a state with only some changes applied.

Returns:

Returns true if the PPS object was updated successfully, false if an error occurred

(call errorString() (p. 85) to get more information).

Public properties of Object

Properties of the Object class for specifying the information flow between the client

application and the underlying PPS object.

PublicationMode

Determines which way attribute changes flow between the application and the PPS

object.

Synopsis:

#include <qpps/object.h>

enum PublicationMode
{
 PublishMode = 0,
 SubscribeMode,
 PublishAndSubscribeMode
};

Data:

PublishMode

Publish but do not subscribe to attribute changes of the underlying PPS

object.

SubscribeMode

Subscribe to but do not publish attribute changes of the underlying PPS

object.

PublishAndSubscribeMode

Publish and subscribe to attribute changes of the underlying PPS object.

88 Copyright © 2014, QNX Software Systems Limited

QPPS API

When opening a server object in client mode, you must use this

setting or you won't properly connect to the object.

Description:

Determines which way attribute changes flow between the application and the PPS

object.

Public slots in Object

Slots defined in the Object class for setting and removing attributes in PPS objects.

removeAttribute()

Remove an attribute from the underlying PPS object.

Synopsis:

#include <qpps/object.h>

bool removeAttribute(const QString &name);

Arguments:

name

The attribute being removed.

Description:

Remove an attribute from the underlying PPS object.

Returns:

Returns true if the PPS object was updated successfully, false if an error occurred

(call errorString() (p. 85) to get more information).

setAttribute()

Set an attribute in the underlying PPS object.

Synopsis:

#include <qpps/object.h>

bool setAttribute(const QString &name,
 const QPps::Variant &value);

Copyright © 2014, QNX Software Systems Limited 89

Object

Arguments:

name

The attribute being set.

value

The attribute's new value.

Description:

Set an attribute in the underlying PPS object.

The PPS service doesn't filter out no-op changes; if an attribute is set, all

subscribers will be notified, even if the value didn't change.

Returns:

Returns true if the PPS object was updated successfully, false if an error occurred

(call errorString() (p. 85) to get more information).

Signals in Object

Signals emitted by Object instances for indicating attribute changes and removals

from PPS objects as well as removals of PPS objects.

attributeChanged()

Emitted when an attribute in the underlying PPS object has changed.

Synopsis:

#include <qpps/object.h>

void attributeChanged(const QString &name,
 const QPps::Variant &value);

Arguments:

name

The name of the attribute that has changed.

value

The attribute's new value.

90 Copyright © 2014, QNX Software Systems Limited

QPPS API

Description:

Emitted when an attribute in the underlying PPS object has changed.

The PPS service doesn't filter out no-op changes; it may be that attribute name

was set, but only to its previous value.

attributesChanged()

Emitted when attributes in the underlying PPS object were changed or removed.

Synopsis:

#include <qpps/object.h>

void attributesChanged(const QPps::Changeset &changes);

Arguments:

changes

A listing of the latest attribute assignments and removals.

Description:

Emitted when attributes in the underlying PPS object were changed or removed. This

signal keeps together any set of changes written atomically.

attributeRemoved()

Emitted when an attribute was removed from the underlying PPS object.

Synopsis:

#include <qpps/object.h>

void attributeRemoved(const QString &name);

Arguments:

name

The name of the attribute that was removed.

Description:

Emitted when an attribute was removed from the underlying PPS object.

Copyright © 2014, QNX Software Systems Limited 91

Object

objectRemoved()

Emitted when the underlying PPS object was removed.

Synopsis:

#include <qpps/object.h>

void objectRemoved();

Description:

Emitted when the underlying PPS object was removed. The isValid() function will

return false after this signal has been emitted.

92 Copyright © 2014, QNX Software Systems Limited

QPPS API

Simulator

Singleton class that simulates a PPS service.

Synopsis:

#include <qpps/simulator.h>

namespace QPps
{
 class QPPS_EXPORT Simulator : public QObject
 {
 Q_OBJECT

 public:

 static Simulator* self();

 bool registerClient(const QString &objectPath,
 QObject *client,
 QString *errorMessage = 0);

 void unregisterClient(QObject *client);

 void triggerInitialListing(QObject *client);

 QStringList clientGetAttributeNames(
 QObject *client) const;

 bool clientSetAttribute(QObject *client,
 const QString &name,
 const QByteArray &value,
 const QByteArray &encoding);

 bool clientGetAttribute(QObject *client,
 const QString &name,
 QByteArray &value,
 QByteArray &encoding) const;

 bool clientRemoveAttribute(QObject *client,
 const QString &name);

 void insertAttribute(const QString &objectPath,
 const QString &key,
 const QByteArray &value,
 const QByteArray &encoding);

 void insertObject(const QString &objectPath);

 void reset();

 QMap< QString, QVariantMap > ppsObjects() const;

 void dumpTree(const QString& pathPrefix =
 QString());

 Q_SIGNALS:

 void clientConnected(qulonglong client);

Copyright © 2014, QNX Software Systems Limited 93

Simulator

 void clientDisconnected(qulonglong client);

 void attributeChanged(const QString &objectPath,
 const QString &key,
 const QByteArray &value,
 const QByteArray &encoding);

 void attributeRemoved(const QString &objectPath,
 const QString &key);

 void objectAdded(const QString &objectPath);

 };
}

Library:

libqpps

Description:

Singleton class that simulates a PPS service.

When QPPS is built in simulator mode, all accesses to PPS objects are redirected to

the Simulator object. This object behaves like a real PPS service (with some limitations)

and lets you inspect values written to PPS objects and modify those values.

Public functions in Simulator

Functions defined in the Simulator class for registering clients to receive notifications

of updates to simulated PPS objects, for assigning, retrieving, and removing attributes

in those objects, and for listing all simulated objects and their contents.

clientGetAttribute()

Get an attribute's value and encoding from the simulated PPS object.

Synopsis:

#include <qpps/simulator.h>

bool clientGetAttribute(QObject *client,
 const QString &name,
 QByteArray &value,
 QByteArray &encoding) const;

Arguments:

client

The client representing the PPS object being read.

name

94 Copyright © 2014, QNX Software Systems Limited

QPPS API

The name of the attribute being read.

value

A QByteArray for storing the attribute's value.

encoding

A QByteArray for storing the attribute's encoding.

Description:

Get the value and encoding of the name attribute from the PPS object represented by

client.

Returns:

Returns true if the attribute was read successfully, false otherwise.

clientGetAttributeNames()

Get the names of all attributes in the simulated PPS object.

Synopsis:

#include <qpps/simulator.h>

QStringList clientGetAttributeNames(QObject *client) const;

Arguments:

client

The client representing the PPS object being read.

Description:

Get the names of all attributes in the simulated PPS object.

Returns:

A list of the names of all attributes in the PPS object.

clientRemoveAttribute()

Remove an attribute from the simulated PPS object.

Synopsis:

#include <qpps/simulator.h>

Copyright © 2014, QNX Software Systems Limited 95

Simulator

bool clientRemoveAttribute(QObject *client,
 const QString &name);

Arguments:

client

The client representing the PPS object being updated.

name

The name of the attribute being removed.

Description:

Remove the name attribute from the PPS object represented by client.

Returns:

Returns true if the attribute was removed successfully, false otherwise.

clientSetAttribute()

Set an attribute in the simulated PPS object.

Synopsis:

#include <qpps/simulator.h>

bool clientSetAttribute(QObject *client,
 const QString &name,
 const QByteArray &value,
 const QByteArray &encoding);

Arguments:

client

The client representing the PPS object being updated.

name

The name of the attribute being updated.

value

The new value to assign the attribute.

encoding

The encoding (type) of the attribute. For details on encoding, see the Object

class.

96 Copyright © 2014, QNX Software Systems Limited

QPPS API

Description:

Set the name attribute to value using the specified encoding, in the PPS object

represented by client.

Returns:

Returns true if the attribute was written successfully, false otherwise.

dumpTree()

Dump the contents of PPS objects to the standard error stream.

Synopsis:

#include <qpps/simulator.h>

void dumpTree(const QString& pathPrefix = QString());

Arguments:

pathPrefix

The prefix in the paths of the PPS objects being outputted to stderr. An

empty prefix means all objects are outputted; this is the default behavior.

Description:

This function outputs any simulated PPS objects with paths starting with pathPrefix

to the standard error stream (stderr).

insertAttribute()

Insert an attribute into a simulated PPS object.

Synopsis:

#include <qpps/simulator.h>

void insertAttribute(const QString &objectPath,
 const QString &key,
 const QByteArray &value,
 const QByteArray &encoding);

Arguments:

objectPath

The path of the simulated PPS object.

key

Copyright © 2014, QNX Software Systems Limited 97

Simulator

The name of the attribute being inserted.

value

The attribute's value.

encoding

The attribute's encoding.

Description:

Insert an attribute named key with the specified value and encoding into the simulated

object at objectPath. This function lets you simulate a process writing to a PPS object

in the filesystem. The simulation is transparent to the clients that have registered for

updates to that object, meaning they can read the inserted attributes as though they

were stored in a real PPS object.

insertObject()

Insert a simulated PPS object.

Synopsis:

#include <qpps/simulator.h>

void insertObject(const QString &objectPath);

Arguments:

objectPath

The path of the simulated PPS object.

Description:

Insert a simulated PPS object at the path in objectPath. No actual filesystem entry is

created, but the simulator allows clients to assign and remove attributes in the object

as though it were really located at objectPath.

ppsObjects()

Get the names of all simulated PPS objects and their attribute settings.

Synopsis:

#include <qpps/simulator.h>

QMap< QString, QVariantMap > ppsObjects() const;

98 Copyright © 2014, QNX Software Systems Limited

QPPS API

Description:

Get the names of all simulated PPS objects and the attribute settings of each object.

This information is returned in a QMap. Each map entry contains a QString, which

stores an object's name, and a QVariantMap, which stores the key-value pairs of all

the object's attributes.

Returns:

The names of the PPS objects defined in the simulator along with their attribute

settings.

registerClient()

Register a client to receive notifications of updates to a simulated PPS object.

Synopsis:

#include <qpps/simulator.h>

bool registerClient(const QString &objectPath,
 QObject *client,
 QString *errorMessage = 0);

Arguments:

objectPath

The path of the simulated PPS object.

client

The client to register for update notifications related to the simulated object

at objectPath.

errorMessage

A string for storing error messages. By default, no string is defined and error

messages are discarded.

Description:

Register the client to receive notifications of updates to the simulated PPS object at

objectPath. All attribute assignments and removals will be handled by the simulator;

no PPS object will be created in the filesystem.

Returns:

Returns true if the client was registered successfully, false if an error occurred.

Copyright © 2014, QNX Software Systems Limited 99

Simulator

reset()

Clear all PPS objects.

Synopsis:

#include <qpps/simulator.h>

void reset();

Description:

This function clears all PPS objects defined in the simulator. These objects still exist

but have no attributes after this function is called.

self()

Retrieve the Simulator object.

Synopsis:

#include <qpps/simulator.h>

static Simulator* self();

Description:

Retrieve a reference to the global Simulator object. You must call this function

before any others in the Simulator class to obtain the object reference, and then

use that reference to call the other functions.

Returns:

A reference to the global instance of the simulator.

triggerInitialListing()

Trigger the initial listing of all attributes for a client.

Synopsis:

#include <qpps/simulator.h>

void triggerInitialListing(QObject *client);

Arguments:

client

The client requesting an initial listing of attributes.

100 Copyright © 2014, QNX Software Systems Limited

QPPS API

Description:

Trigger the initial listing of all attributes for a client.

unregisterClient()

Unregister a client from receiving notifications of updates to a simulated PPS object.

Synopsis:

#include <qpps/simulator.h>

void unregisterClient(QObject *client);

Arguments:

client

The client to unregister.

Description:

Unregister a client. This client will no longer receive notifications of updates to the

simulated PPS object that it registered when calling registerClient() (p. 99).

Signals in Simulator

Signals emitted by Simulator objects for indicating new client connections and

disconnections, attribute updates and removals, and PPS object additions.

attributeChanged()

Emitted when an attribute has been added or updated.

Synopsis:

#include <qpps/simulator.h>

void attributeChanged(const QString &objectPath,
 const QString &key,
 const QByteArray &value,
 const QByteArray &encoding);

Arguments:

objectPath

The path of the affected PPS object.

key

The name of the attribute that was added or updated.

Copyright © 2014, QNX Software Systems Limited 101

Simulator

value

The attribute's new value.

encoding

The attribute's encoding.

Description:

Emitted when an attribute has been added or updated.

attributeRemoved()

Emitted when an attribute has been removed.

Synopsis:

#include <qpps/simulator.h>

void attributeRemoved(const QString &objectPath,
 const QString &key);

Arguments:

objectPath

The path of the affected PPS object.

key

The name of the attribute that was removed.

Description:

Emitted when an attribute has been removed.

clientConnected()

Emitted when a client has registered with the simulator.

Synopsis:

#include <qpps/simulator.h>

void clientConnected(qulonglong client);

Arguments:

client

102 Copyright © 2014, QNX Software Systems Limited

QPPS API

A unique number identifying the client that has just registered.

Description:

Emitted when a client has registered with the simulator.

clientDisconnected()

Emitted when a client has unregistered with the simulator.

Synopsis:

#include <qpps/simulator.h>

void clientDisconnected(qulonglong client);

Arguments:

client

A unique number identifying the client that has just unregistered.

Description:

Emitted when a client has unregistered with the simulator.

objectAdded()

Emitted when a new PPS object has been added in the simulator.

Synopsis:

#include <qpps/simulator.h>

void objectAdded(const QString &objectPath);

Arguments:

objectPath

The path of the newly added PPS object.

Description:

Emitted when a new PPS object has been added in the simulator.

There is no objectRemoved() signal because the simulator doesn't support

removing objects.

Copyright © 2014, QNX Software Systems Limited 103

Simulator

Variant

Stores the value and type information for a PPS attribute.

Synopsis:

#include <qpps/variant.h>

namespace QPps
{
 class QPPS_EXPORT Variant
 {
 public:

 Variant();

 Variant(const QByteArray &value,
 const QByteArray &encoding);

 Variant(const QString &stringValue);

 Variant(const QByteArray &value);

 Variant(bool value);

 Variant(int value);

 Variant(double value);

 Variant(const QJsonObject &value);

 Variant(const QJsonDocument &value);

 bool isValid() const;

 QByteArray value() const;

 QByteArray encoding() const;

 QString toString() const;

 QByteArray toByteArray() const;

 bool toBool() const;

 int toInt(bool *ok = 0) const;

 double toDouble(bool *ok = 0) const;

 QJsonDocument toJson(
 QJsonParseError *error = 0) const;

 bool operator==(const Variant &other) const;

 bool operator!=(const Variant &other) const;

 };
}

104 Copyright © 2014, QNX Software Systems Limited

QPPS API

Library:

libqpps

Description:

Stores the value and type information for a PPS attribute. Each attribute consists of

a raw value and an encoding, both stored as strings. The encoding indicates the

attribute value's "real" type and how to translate between the string representation and

the real type.

PPS doesn't standardize any encodings but a few are common in practice:

• b for Boolean (bool)

• n for numbers (floating-point or integer)

• b64 for binary data (QByteArray)

• json for JSON format (QJsonObject or QJsonDocument)

• s for string

This class handles all of these encodings.

Public functions in Variant

Functions defined in the Variant class for constructing attributes of different types,

for retrieving the values and encodings of attributes, and for converting attributes to

specific data types.

encoding()

Get the attribute's encoding, which indicates how to transform its raw value into a

meaningful type.

Synopsis:

#include <qpps/variant.h>

QByteArray encoding() const;

Description:

Get the attribute's encoding, which indicates how to transform its raw value into a

meaningful type. If the encoding is empty, the raw value is probably meant to be used

as is.

Returns:

A QByteArray containing the attribute's encoding.

Copyright © 2014, QNX Software Systems Limited 105

Variant

isValid()

Check if the Variant is valid.

Synopsis:

#include <qpps/variant.h>

bool isValid() const;

Description:

Check if the Variant is valid.

Returns:

Returns true if the Variant is valid, false otherwise. For this release, only the

default constructor can create an invalid variant.

toBool()

Convert the attribute value to a bool (b encoding).

Synopsis:

#include <qpps/variant.h>

bool toBool() const;

Description:

Convert the attribute value to a bool (b encoding).

Returns:

A bool containing the attribute's value.

toByteArray()

Convert the attribute value to a QByteArray (b64 encoding).

Synopsis:

#include <qpps/variant.h>

QByteArray toByteArray() const;

Description:

Convert the attribute value to a QByteArray (b64 encoding).

106 Copyright © 2014, QNX Software Systems Limited

QPPS API

Returns:

A QByteArray containing the attribute's value.

toDouble()

Convert the attribute value to a double (n encoding).

Synopsis:

#include <qpps/variant.h>

int toDouble(bool *ok = 0) const;

Arguments:

ok

A reference to a bool for storing the conversion status. When the reference

is non-NULL, the status is set to false if a conversion error occurs;

otherwise, it's set to true.

Description:

Convert the attribute value to a double (n encoding).

Returns:

A double containing the attribute's value.

toInt()

Convert the attribute value to an int (n encoding).

Synopsis:

#include <qpps/variant.h>

int toInt(bool *ok = 0) const;

Arguments:

ok

A reference to a bool for storing the conversion status. When the reference

is non-NULL, the status is set to false if a conversion error occurs;

otherwise, it's set to true.

Copyright © 2014, QNX Software Systems Limited 107

Variant

Description:

Convert the attribute value to an int (n encoding).

Returns:

An int containing the attribute's value.

toJson()

Convert the attribute value to a JSON document (json encoding).

Synopsis:

#include <qpps/variant.h>

QJsonDocument toJson(QJsonParseError *error = 0) const;

Arguments:

error

A reference to a QJsonParseError object for storing the conversion

outcome. When the reference is non-NULL, the object will contain

information about any JSON parsing error that may have occurred.

Description:

Convert the attribute value to a JSON document (json encoding).

Returns:

A QJsonDocument containing the attribute's value.

toString()

Convert the attribute value to a QString.

Synopsis:

#include <qpps/variant.h>

QString toString() const;

Description:

Convert the attribute value to a QString. This function is similar to value(), except

that it checks if the encoding is either empty or s (string).

108 Copyright © 2014, QNX Software Systems Limited

QPPS API

Returns:

A QString containing the attribute's value.

value()

Get the attribute's raw value.

Synopsis:

#include <qpps/variant.h>

QByteArray value() const;

Description:

Get the attribute's raw value.

Returns:

The raw value, as a QByteArray.

Variant()

Construct an empty Variant.

Synopsis:

#include <qpps/variant.h>

Variant();

Description:

Construct an empty Variant. The isValid() function will return false.

Variant(bool)

Construct a Variant containing a bool (b encoding).

Synopsis:

#include <qpps/variant.h>

Variant(bool value);

Arguments:

value

The Boolean to store.

Copyright © 2014, QNX Software Systems Limited 109

Variant

Description:

Construct a Variant containing a bool (b encoding).

Variant(double)

Construct a Variant containing a double (n encoding).

Synopsis:

#include <qpps/variant.h>

Variant(double value);

Arguments:

value

The double-precision floating-point number to store.

Description:

Construct a Variant containing a double (n encoding).

Variant(int)

Construct a Variant containing an int (n encoding).

Synopsis:

#include <qpps/variant.h>

Variant(int value);

Arguments:

value

The integer to store.

Description:

Construct a Variant containing an int (n encoding).

110 Copyright © 2014, QNX Software Systems Limited

QPPS API

Variant(QByteArray)

Construct a Variant containing a QByteArray (b64 encoding).

Synopsis:

#include <qpps/variant.h>

Variant(const QByteArray &value);

Arguments:

value

The QByteArray to store.

Description:

Construct a Variant containing a QByteArray (b64 encoding).

Variant(QJsonDocument)

Construct a Variant containing a QJsonDocument (json encoding).

Synopsis:

#include <qpps/variant.h>

Variant(const QJsonDocument &value);

Arguments:

value

The QJsonDocument to store.

Description:

Construct a Variant containing a QJsonDocument (json encoding).

Variant(QJsonObject)

Construct a Variant containing a QJsonObject (json encoding).

Synopsis:

#include <qpps/variant.h>

Variant(const QJsonObject &value);

Copyright © 2014, QNX Software Systems Limited 111

Variant

Arguments:

value

The QJsonObject to store.

Description:

Construct a Variant containing a QJsonObject (json encoding).

Variant(QString)

Construct a Variant containing a string but with an empty encoding.

Synopsis:

#include <qpps/variant.h>

Variant(const QString &stringValue);

Arguments:

stringValue

The string to store.

Description:

Construct a Variant containing a QString but with an empty encoding.

Variant(QByteArray,QByteArray)

Construct a Variant containing an arbitrary type of value and encoding.

Synopsis:

#include <qpps/variant.h>

Variant(const QByteArray &value,
 const QByteArray &encoding);

Arguments:

value

A QByteArray containing the raw value to store.

encoding

A QByteArray containing the encoding to use.

112 Copyright © 2014, QNX Software Systems Limited

QPPS API

Description:

Construct a Variant containing an arbitrary type of value and encoding. You must

first encode the value in the value QByteArray before passing it in along with the

desired encoding (type).

The value and encoding must not contain null or \n byte values and encoding

must not contain a colon (:).

operator==

Test whether two Variant objects are equal (in terms of validity, encoding, and

value).

Synopsis:

#include <qpps/variant.h>

bool operator==(const Variant &other) const;

Arguments:

other

The Variant on the right side of the equality operator to compare with the

one on the left side.

Description:

Test whether two Variant objects are equal (in terms of validity, encoding, and

value).

Returns:

Returns true if the objects are equal, false otherwise.

operator!=

Test whether two Variant objects are not equal (in terms of validity, encoding, or

value).

Synopsis:

#include <qpps/variant.h>

bool operator!=(const Variant &other) const;

Arguments:

Copyright © 2014, QNX Software Systems Limited 113

Variant

other

The Variant on the right side of the inequality operator to compare with

the one on the left side.

Description:

Test whether two Variant objects are not equal (in terms of validity, encoding, or

value).

Returns:

Returns true if the objects are not equal, false otherwise.

114 Copyright © 2014, QNX Software Systems Limited

QPPS API

Chapter 5
QPlayer API

The QPlayer library provides a Qt5 API for sending media commands to the mm-

player service and for reading media file and playback information from that service.

The library replaces the C API of mm-player with an object-oriented interface that

defines signals for handling media-related events and slots for performing playback

operations.

The QPlayer API consists of four sections:

• Error and event type enumerations

• Media command classes

• Media information data types

• The QPlayer class

All public enumerations, data types, and classes in the QPlayer API are defined

within the QPlayer namespace. If your app uses other enumerations, data

types, or classes with names matching any QPlayer API components, your code

must explicitly refer to the QPlayer components by listing the namespace in

front of them (e.g., QPlayer::Metadata).

Copyright © 2014, QNX Software Systems Limited 115

Error and event type enumerations

The enumerations in types.h define error code constants as well as media source

and tracksession event types.

To make your Qt app code more readable, you can use the error code constants when

inspecting function return values. The MediaSourceEventType and

TrackSessionEventType enumerations define constants that are encoded in some

of the signals emitted by QPlayer objects. Qt slots connected to these signals can

then check for specific event type constants, which further improves code readability.

Error codes enum

Error codes.

Synopsis:

#include <qplayer/types.h>

enum {
 ERROR = -1,
 NO_ERROR = 0
};

Data:

ERROR

There was an error with the operation.

NO_ERROR

The operation completed without error.

Library:

libqplayer

Description:

Constants describing the possible error codes returned by a QPlayer API function.

MediaSourceEventType

Media source event types.

Synopsis:

#include <qplayer/types.h>

116 Copyright © 2014, QNX Software Systems Limited

QPlayer API

typedef enum
{
 MEDIA_ADDED,
 MEDIA_REMOVED,
 MEDIA_UPDATED
} MediaSourceEventType;

Data:

MEDIA_ADDED

The media source was added.

MEDIA_REMOVED

The media source was removed.

MEDIA_UPDATED

The media source was updated.

Library:

libqplayer

Description:

Media source event types.

TrackSessionEventType

Tracksession event types.

Synopsis:

#include <qplayer/types.h>

typedef enum {
 TRACK_SESSION_CREATED,
 TRACK_SESSION_DESTROYED,
 TRACK_SESSION_APPENDED
} TrackSessionEventType;

Data:

TRACK_SESSION_CREATED

The tracksession was created.

TRACK_SESSION_DESTROYED

The tracksession was destroyed.

TRACK_SESSION_APPENDED

Copyright © 2014, QNX Software Systems Limited 117

Error and event type enumerations

The tracksession was appended to.

Library:

libqplayer

Description:

Tracksession event types.

118 Copyright © 2014, QNX Software Systems Limited

QPlayer API

Media command classes

The QPlayer API exposes a set of command classes for specifying parameters of

media operations and for reading operation results.

When issuing requests to browse media or to read metadata, information on tracks,

or playback state information, clients must pass in a pointer to a command object

containing the request parameters. The API defines a command class for each operation

type. For example, to browse the contents of a folder on a media source, a client must

create a BrowseCommand object, specify in that object the IDs of the media source

and folder that it wants to browse, and then pass in a pointer to that object when

calling QPlayer::browse().

For all operations, clients must create a command object that specifies the operation

parameters, wait for it to emit a complete signal (which indicates the operation

succeeded), and then read the operation results by calling the object's result() method.

You must wait for the complete signal before retrieving the results; otherwise,

the results will be empty. The library calls a command object's setResult()

method to write the results data in the object, but this method is meant for

internal use only.

If a command fails, the object instead emits an error signal. Your client code can call

the errorMessage() function to get information about the error.

Command objects include pointers to themselves in their emitted complete and error

signals. These objects delete themselves after the callbacks that process these signals

finish executing. So, the client doesn't have to do any memory management for these

objects.

Source code sample

The following code sample searches a media source. It's adapted from the reference

HMI SearchModel implementation.

// Create a pointer to a SearchCommand instance,
// specifying the media source ID and search term parameters
QPlayer::SearchCommand *command =
 new QPlayer::SearchCommand(1, QStringLiteral("time"));

// Connect a slot to the command's 'complete' signal.
// This slot is called when the command completes successfully.
connect(command, &QPlayer::SearchCommand::complete, this,
 &SearchModel::Private::onSearchResult);

// Connect a slot to the command's 'error' signal.
// This slot is called when the command fails.
connect(command, &QPlayer::SearchCommand::error, this,
 &SearchModel::Private::onSearchError);

Copyright © 2014, QNX Software Systems Limited 119

Media command classes

// Start the search by passing the SearchCommand pointer to the
// search() method
q->m_qPlayer->search(command);

The complete handler looks like this:

void SearchModel::Private::onSearchResult(
 QPlayer::SearchCommand *command)
{
 // The result of a search command is a list of type
 // QList<QPlayer::MediaNode>. Check if we received a single
 // search result node; if so, output its ID.
 if(command->result().length() == 1) {
 qDebug() << command->result().at(0).id;
 }

 // We don't need to clean up the memory allocated for the
 // command because it deletes itself after the 'complete' and
 // 'error' signal handlers finish executing.
 // For this reason, it's important not to keep copies of the
 // command pointer after the signal handlers are called.
 // If the command results are needed outside the handlers,
 // the results should be copied.
}

BaseCommand

Defines common features for media commands, such as error message storage and

retrieval.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class BaseCommand : public QObject
 {
 Q_OBJECT

 public:

 explicit BaseCommand();

 ~BaseCommand();

 void setErrorMessage(QString message);

 QString errorMessage() const;

 signals:

 void complete(BaseCommand *command);
 // Must be overridden in derived class

 void error(BaseCommand *command);
 // Must be overridden in derived class

 };

}

120 Copyright © 2014, QNX Software Systems Limited

QPlayer API

Library:

libqplayer

Description:

Defines common features for media commands, such as error message storage and

retrieval. All other command classes are derived from this base class and must override

the complete and error signals. The BaseCommand class is an abstract class and

shouldn't be used directly.

BrowseCommand

Stores browse parameters and results of browse operations.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class BrowseCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit BrowseCommand(int mediaSourceId,
 QString mediaNodeId,
 int limit = -1,
 int offset = 0);

 inline QList< MediaNode > result()
 {
 return m_result;
 }

 inline void setResult(QList< MediaNode > result)
 {
 m_result = result;
 }

 int mediaSourceId() const;

 QString mediaNodeId() const;

 int limit() const;

 int offset() const;

 signals:

 void complete(BrowseCommand *command);

 void error(BrowseCommand *command);

 };

}

Copyright © 2014, QNX Software Systems Limited 121

Media command classes

Library:

libqplayer

Description:

Stores browse parameters and results of browse operations. The results are represented

as a list of media nodes. When creating a BrowseCommand object, you must provide

the IDs of the folder media node to browse and the media source that the node is

located on. To start browsing a new media source with an unknown directory structure,

pass in "/" for the media node ID to indicate the root folder. You can also provide a

limit on how many nodes can be stored in the results and specify the offset to start

browsing from in the folder.

We recommend using these last two parameters whenever possible because retrieving

all media nodes can be very slow due to either a large number of nodes or the device

type (e.g., DLNA). You can define the limit and offset parameters to organize browse

results into fixed-size sets of nodes. For example, you can read the first 25 nodes in

a media source folder, then the next 25, and so on. This strategy reduces the command

processing time and restricts memory usage.

When the underlying player has finished browsing the media source, the

BrowseCommand object emits a complete signal to notify clients that the browse

results can now be read. Clients can then call the result() method to retrieve the list

of media nodes found. From that list, they can read information on individual nodes

or further explore the media source by issuing browse requests on nodes found in the

list.

If the browse() command fails, the object emits an error signal. You can then call

errorMessage() to retrieve a QString describing the error.

CreateTrackSessionCommand

Stores tracksession creation parameters and information about the new tracksession.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class CreateTrackSessionCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit CreateTrackSessionCommand(
 int mediaSourceId,
 QString mediaNodeId,
 int index = 0,
 int limit = -1);

122 Copyright © 2014, QNX Software Systems Limited

QPlayer API

 inline TrackSession result()
 {
 return m_result;
 }

 inline void setResult(TrackSession result)
 {
 m_result = result;
 }

 int mediaSourceId() const;

 QString mediaNodeId() const;

 int index() const;

 int limit() const;

 signals:

 void complete(CreateTrackSessionCommand *command);

 void error(CreateTrackSessionCommand *command);

 };

}

Library:

libqplayer

Description:

Stores tracksession creation parameters and information about the new tracksession.

A tracksession is a sequence of playable tracks. When creating a

CreateTrackSessionCommand object, you must provide the IDs of the “base”

media node, which is used to populate the tracksession, and of the media source that

the base node is located on. The exact behavior of tracksession creation depends on

the type of the base node and the mm-player configuration. For more information,

see the mm_player_create_trksession() method in the Multimedia Player Developer's

Guide.

You can also specify the index of the track to be played first and provide a limit on

how many items can be stored in the tracksession. These two settings apply only to

folders.

When the underlying player has finished creating the tracksession, the

CreateTrackSessionCommand object emits a complete signal to notify clients

that the tracksession has been created. Clients can then call the result() method to

retrieve information about the new tracksession. Note that the tracksession object

doesn't contain the actual tracks, but rather an ID that you can pass into the

QPlayer::getTrackSessionItems() (p. 155) function to retrieve the media nodes of the

tracks.

Copyright © 2014, QNX Software Systems Limited 123

Media command classes

If the createTrackSession() command fails, the object emits an error signal. You can

then call errorMessage() to retrieve a QString describing the error.

CurrentTrackCommand

Stores information about a track.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class CurrentTrackCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit CurrentTrackCommand();

 inline Track result()
 {
 return m_result;
 }

 inline void setResult(Track result)
 {
 m_result = result;
 }

 signals:

 void complete(CurrentTrackCommand *command);

 void error(CurrentTrackCommand *command);

 };

}

Library:

libqplayer

Description:

Stores information about a track. When you create a CurrentTrackCommand object

and pass in its reference in a getCurrentTrack() call, the library fills in this object with

information on the track currently selected for playback. The object emits a complete

signal to notify clients when the library finishes writing the track information. Clients

can then call the result() method to retrieve the information.

If the getCurrentTrack() command fails, the object emits an error signal. You can then

call errorMessage() to retrieve a QString describing the error.

124 Copyright © 2014, QNX Software Systems Limited

QPlayer API

CurrentTrackPositionCommand

Stores the playback position of the current track.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class CurrentTrackPositionCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit CurrentTrackPositionCommand();

 inline int result()
 {
 return m_result;
 }

 inline void setResult(int result)
 {
 m_result = result;
 }

 signals:

 void complete(CurrentTrackPositionCommand *command);

 void error(CurrentTrackPositionCommand *command);

 };

}

Library:

libqplayer

Description:

Stores the playback position of the current track. When you create a

CurrentTrackPositionCommand object and pass in its reference in a

getCurrentTrackPosition() call, the library writes the playback position of the current

track into the object. The object emits a complete signal to notify clients when the

library finishes writing the playback position. Clients can then call the result() method

to retrieve the position.

If the getCurrentTrackPosition() command fails, the object emits an error signal. You

can then call errorMessage() to retrieve a QString describing the error.

Copyright © 2014, QNX Software Systems Limited 125

Media command classes

ExtendedMetadataCommand

Specifies parameters for retrieving extended metadata and returns extended metadata

read.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class ExtendedMetadataCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit ExtendedMetadataCommand(
 int mediaSourceId,
 QString mediaNodeId,
 QStringList properties);

 inline QHash< QString, QVariant > result()
 {
 return m_result;
 }

 inline void setResult(
 const QHash< QString, QVariant > result)
 {
 m_result = result;
 }

 int mediaSourceId() const;

 QString mediaNodeId() const;

 QStringList properties() const;

 signals:

 void complete(ExtendedMetadataCommand *command);

 void error(ExtendedMetadataCommand *command);

 };
}

Library:

libqplayer

Description:

Specifies parameters for retrieving extended metadata and returns extended metadata

read. Here, extended metadata refers to nonstandard metadata fields, such as the

URL of a media node. When creating an ExtendedMetadataCommand object, you

126 Copyright © 2014, QNX Software Systems Limited

QPlayer API

must specify the extended metadata fields to read as well as the IDs of the media

node being read and of the media source where the node is located.

When the underlying player has finished retrieving the extended metadata from a

media node, the object emits a complete signal to notify clients that the extended

metadata can now be read. Clients can then call the result() method to retrieve the

extended metadata. Although not essential for helping users locate and play media

files, extended metadata provides additional information to assist with browsing and

accessing content on media sources.

If the getExtendedMetadata() command fails, the object emits an error signal. You

can then call errorMessage() to retrieve a QString describing the error.

MediaSourcesCommand

Stores the list of accessible media sources.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class MediaSourcesCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit MediaSourcesCommand();

 inline QList< MediaSource > result()
 {
 return m_result;
 }

 inline void setResult(QList< MediaSource> result)
 {
 m_result = result;
 }

 signals:

 void complete(MediaSourcesCommand *command);

 void error(MediaSourcesCommand *command);

 };

}

Library:

libqplayer

Copyright © 2014, QNX Software Systems Limited 127

Media command classes

Description:

Stores the list of accessible media sources. The media source information contained

in the list includes the names, hardware types, and supported operations for every

media source that can be browsed and has content playable by the current player. No

parameters are needed when creating a MediaSourcesCommand object because this

operation is not specific to a media source or media node.

When the underlying player has finished writing the list of media sources, the object

emits a complete signal to notify clients that information about all accessible media

sources can now be read. Clients can then call the result() method to retrieve the

media source information.

If the getMediaSources() command fails, the object emits an error signal. You can

then call errorMessage() to retrieve a QString describing the error.

MetadataCommand

Stores metadata retrieval parameters and metadata read from a media node.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class MetadataCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit MetadataCommand(int mediaSourceId,
 QString mediaNodeId);

 ~MetadataCommand();

 inline QPlayer::Metadata result()
 {
 return m_result;
 }

 inline void setResult(QPlayer::Metadata result)
 {
 m_result = result;
 }

 int mediaSourceId() const;

 QString mediaNodeId() const;

 signals:

 void complete(MetadataCommand *command);

 void error(MetadataCommand *command);

128 Copyright © 2014, QNX Software Systems Limited

QPlayer API

 };

}

Library:

libqplayer

Description:

Stores metadata retrieval parameters and metadata read from a media node. Metadata

includes a media node's creation details (e.g., artist name, genre, year of release),

runtime information (e.g., track length), or display parameters (e.g., width, height).

The exact metadata fields defined for a given media node depend on its type—audio,

video, or photo. When creating a MetadataCommand object, you must specify the

IDs of the media node from which you're reading metadata and of the media source

on which the node is located.

When the underlying player has finished retrieving the metadata from a media node,

the object emits a complete signal to notify clients that the metadata can now be read.

Clients can then call the result() method to retrieve the metadata. Obtaining up-to-date

metadata is useful for refreshing the HMI display when the user browses to or starts

playing a new media file.

If the getMetadata() command fails, the object emits an error signal. You can then

call errorMessage() to retrieve a QString describing the error.

PlayerStateCommand

Stores the current player state.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class PlayerStateCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit PlayerStateCommand();

 inline PlayerState result()
 {
 return m_result;
 }

 inline void setResult(PlayerState result)
 {
 m_result = result;
 }

Copyright © 2014, QNX Software Systems Limited 129

Media command classes

 signals:

 void complete(PlayerStateCommand *command);

 void error(PlayerStateCommand *command);

 };

}

Library:

libqplayer

Description:

Stores the current player state. The state information for a player includes its shuffle

mode, repeat mode, playback rate, and playback status (e.g., PLAYING, IDLE). No

parameters are needed when creating a PlayerState object because this operation

isn't specific to a media source or media node.

When the library has finished updating a player's state information, the object emits

a complete signal to notify clients that the updated player state can now be read.

Clients can then call the result() method to retrieve the state information.

If the getPlayerState() command fails, the object emits an error signal. You can then

call errorMessage() to retrieve a QString describing the error.

SearchCommand

Stores search parameters and search results.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class SearchCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit SearchCommand(int mediaSourceId,
 QString searchTerm,
 QString filter = "",
 int limit = -1,
 int offset = 0);

 inline QList< MediaNode > result()
 {
 return m_result;
 }

 inline void setResult(QList< MediaNode > result)
 {

130 Copyright © 2014, QNX Software Systems Limited

QPlayer API

 m_result = result;
 }

 int mediaSourceId() const;

 QString searchTerm() const;

 QString filter() const;

 int limit() const;

 int offset() const;

 signals:

 void complete(SearchCommand *command);

 void error(SearchCommand *command);

 };

}

Library:

libqplayer

Description:

Stores search parameters and search results. The results are returned in a single media

node, which you must browse to view individual media nodes found to have metadata

matching the search parameters. This design allows clients to create tracksessions

containing all the results of a search operation by providing the ID of the media node

returned by that operation to a CreateTrackSessionCommand object.

When creating a SearchCommand object, you must provide a search string and the

ID of the media source that you want to search. A media node is added to the results

if one of its metadata fields has a value matching the search string. You can specify

which fields to examine; by default, the underlying player examines all metadata fields.

You can also specify a limit on how many nodes can be stored in the results as well

as the offset to start searching from within the root folder of the media source.

When the underlying player has finished searching the media source, the object emits

a complete signal to notify clients that the search results can now be read. Clients

can then call the result() method to retrieve the media node containing the search

results, which they can browse to read information about individual media nodes

matching the search parameters.

If the search() command fails, the object emits an error signal. You can then call

errorMessage() to retrieve a QString describing the error.

Copyright © 2014, QNX Software Systems Limited 131

Media command classes

TrackSessionInfoCommand

Stores information about a tracksession.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class TrackSessionInfoCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit TrackSessionInfoCommand();

 inline TrackSession result()
 {
 return m_result;
 }

 inline void setResult(TrackSession result)
 {
 m_result = result;
 }

 signals:

 void complete(TrackSessionInfoCommand *command);

 void error(TrackSessionInfoCommand *command);

 };

}

Library:

libqplayer

Description:

Stores information about a tracksession. When you create a

TrackSessionInfoCommand object and pass in its reference in a

getCurrentTrackSessionInfo() call, the library fills in this object with information on

the active tracksession for the underlying player.

The object emits a complete signal to notify clients when the library finishes writing

the tracksession information. Clients can then call the result() method to retrieve the

information.

If the getCurrentTrackSessionInfo() command fails, the object emits an error signal.

You can then call errorMessage() to retrieve a QString describing the error.

132 Copyright © 2014, QNX Software Systems Limited

QPlayer API

TrackSessionItemsCommand

Stores parameters for retrieving tracksession items.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 class TrackSessionItemsCommand : public BaseCommand
 {
 Q_OBJECT

 public:

 explicit TrackSessionItemsCommand(int trackSessionId,

 int limit = -1,
 int offset = 0);

 inline QList< MediaNode > result()
 {
 return m_result;
 }

 inline void setResult(QList< MediaNode > result)
 {
 m_result = result;
 }

 uint64_t trackSessionId() const;

 int limit() const;

 int offset() const;

 signals:

 void complete(TrackSessionItemsCommand *command);

 void error(TrackSessionItemsCommand *command);

 };

}

Library:

libqplayer

Description:

Stores parameters for retrieving tracksession items. These items are stored in a list of

media nodes, each of which represents an element found in a media source. When

creating a TrackSessionItemsCommand, you must define the trackSessionId

parameter to identify the tracksession that you're reading. You may also define the

Copyright © 2014, QNX Software Systems Limited 133

Media command classes

limit and offset parameters to restrict the number of items retrieved and to specify

the tracksession offset to starting reading tracks from.

The object emits a complete signal to notify clients when the library finishes filling in

the list of media nodes for the tracksession items. Clients can then call the result()

method to retrieve that list.

If the getTrackSessionItems() command fails, the object emits an error signal. You

can then call errorMessage() to retrieve a QString describing the error.

134 Copyright © 2014, QNX Software Systems Limited

QPlayer API

Media information data types

The data types defined in types.h store information about accessible media files,

the active tracksession, the currently selected track, supported metadata fields, and

playback state. These data types are used in QPlayer function calls to specify media

commands and store their outcomes.

The PlayerState class defines fields for a player's shuffle and repeat settings as

well as its playback status (e.g., PLAYING, STOPPED) and current playback rate

(speed). When one of these playback settings changes for an active player, the

QPlayer API emits a signal containing a PlayerState object that stores the player's

latest state.

The QPlayer API also allows you to retrieve a list of accessible media sources. The

MediaSource objects in this list each contain the unique ID, name, hardware type,

and other information describing a particular media source. The API function that

searches a media source for playable content returns a list of MediaNode objects,

each of which stores the properties of an element found within the media source.

These properties include the media node's type, its unique ID, its URL, and more.

A TrackSession object stores only its tracksession ID and length (i.e., number of

tracks). Each Track object references its related TrackSession, MediaNode, and

Metadata object. This last object stores the track's metadata fields, such as the artist

name, album title, year of release, the URL of a coverart file, and video dimensions.

MediaNode

Stores properties describing an element found within a media source.

Synopsis:

#include <qplayer/types.h>

class MediaNode {

public:
 enum Type {
 UNKNOWN = 0,
 FOLDER,
 AUDIO,
 VIDEO,
 RESERVED1,
 PHOTO,
 NUMBER
 };

 QString id;
 int mediaSourceId;
 QString name;
 QUrl url;
 Type type;

Copyright © 2014, QNX Software Systems Limited 135

Media information data types

 int count;
};

Data:

QString id

Unique ID of the media node.

int mediaSourceId

ID of the media source on which the media node is located.

QString name

Name of the media node.

QUrl url

Media node URL.

Type type

Media node type. Can be one of:

UNKNOWN

Unknown file category.

FOLDER

Folder.

AUDIO

Audio file.

VIDEO

Video file.

RESERVED1

Reserved for future use.

PHOTO

Photo file.

NUMBER

End-of-list identifier.

int count

136 Copyright © 2014, QNX Software Systems Limited

QPlayer API

Number of children contained in this node (for folders, -1 means unknown).

Library:

libqplayer

Description:

Stores properties describing an element found within a media source. A media node

can be a folder, audio track, video item, or photo. Folders can contain other media

nodes (i.e., children). All types of media nodes are found by browsing or searching a

media source.

MediaSource

Stores properties describing a connected media source.

Synopsis:

#include <qplayer/types.h>

class MediaSource {

public:
 enum Type {
 HDD,
 USB,
 IPOD,
 DLNA,
 BLUETOOTH,
 MTP,
 UNKNOWN
 };

 enum Status {
 NOT_READY,
 READY,
 FIRST_PASS,
 SECOND_PASS,
 THIRD_PASS
 };

 enum Capability {
 PLAY = (0x00000001),
 PAUSE = (0x00000002),
 NEXT = (0x00000004),
 PREVIOUS = (0x00000008),
 SEEK = (0x00000010),
 SET_PLAYBACK_RATE = (0x00000020),
 SHUFFLE = (0x00000040),
 REPEAT_ALL = (0x00000080),
 REPEAT_ONE = (0x00000100),
 REPEAT_NONE = (0x00000200),
 STOP = (0x00000400),
 JUMP = (0x00000800),
 GET_POSITION = (0x00001000),
 METADATA = (0x00010000),

Copyright © 2014, QNX Software Systems Limited 137

Media information data types

 SEARCH = (0x00020000),
 BROWSE = (0x00040000),
 EXTENDED_METADATA = (0x00080000)
 };

 int id;
 QString uid;
 QString name;
 QString viewName;
 Type type;
 Status status;
 uint64_t capabilities;
};

Data:

int id

Unique ID of the media source.

QString uid

Unique ID of the hardware device.

QString name

Media source name.

QString viewName

Name of the view configured for the media source. The view can be changed

in the mm-player configuration to suit the HMI's needs.

Type type

Hardware type. Can be one of:

HDD

Local drive.

USB

USB storage device.

IPOD

iPod.

DLNA

DLNA device.

BLUETOOTH

138 Copyright © 2014, QNX Software Systems Limited

QPlayer API

Bluetooth device.

MTP

Device with MTP files (e.g., Android, Win7/8 phone).

UNKNOWN

Customized media source.

Status status

Media source status. Can be one of:

NOT_READY

The media source isn't ready because the device is connected but

hasn't been synchronized.

READY

The media source is ready, meaning it's connected and

synchronized and its status can be read.

FIRST_PASS

The file information from the media source has been synchronized.

SECOND_PASS

The media metadata from the media source has been synchronized.

THIRD_PASS

The playlist entry information for the media source has been

synchronized.

uint64_t capabilities

A flag field indicating the supported browsing and playback operations.

Supported flags include:

PLAY

Playback is supported.

PAUSE

Playback can be paused.

NEXT

Copyright © 2014, QNX Software Systems Limited 139

Media information data types

You can skip to the next track.

PREVIOUS

You can skip to the previous track.

SEEK

You can seek to a specific playback position.

SET_PLAYBACK_RATE

Playback speed can be adjusted.

SHUFFLE

Playback can be shuffled (i.e., randomized)

REPEAT_ALL

You can repeat all tracks in the same order.

REPEAT_ONE

You can repeat one track continuously.

REPEAT_NONE

You can disable repeating.

STOP

Playback can be stopped.

JUMP

You can jump to another track within the active tracksession.

GET_POSITION

You can retrieve the current playback position.

METADATA

You can retrieve metadata from media nodes.

SEARCH

You can retrieve media nodes with metadata properties matching

a search string.

BROWSE

You can browse a media node within a media source.

EXTENDED_METADATA

140 Copyright © 2014, QNX Software Systems Limited

QPlayer API

You can retrieve extended metadata (i.e., nonstandard properties)

from media nodes.

Library:

libqplayer

Description:

Stores properties describing a connected media source. This class defines enumerations

that specify the possible values for a media source's hardware type and connection

status as well as the flags that represent various media operations. When examining

the fields that store these settings in a MediaSource object, your code can compare

the field values to specific enumeration constants, making it more readable.

Metadata

Stores metadata fields containing creation and playback information for a media node.

Synopsis:

#include <qplayer/types.h>

class Metadata {

public:
 QString title;
 int duration;
 QUrl artwork;
 QString artist;
 QString album;
 QString genre;
 QString year;
 int width;
 int height;
 int disc;
 int track;
 QString reserved;
};

Data:

QString title

Media file title.

int duration

Track duration (in milliseconds).

QUrl artwork

Copyright © 2014, QNX Software Systems Limited 141

Media information data types

URL of filepath for artwork (NULL if there's no artwork).

QString artist

Artist name.

QString album

Album name.

QString genre

Genre.

QString year

Year of creation.

int width

Width (in pixels).

int height

Height (in pixels).

int disc

Disc number (-1 if not applicable).

int track

Track index (-1 if not applicable).

QString reserved

Reserved for future use.

Library:

libqplayer

Description:

Stores metadata fields containing creation and playback information for a media node.

142 Copyright © 2014, QNX Software Systems Limited

QPlayer API

PlayerState

Stores playback status properties.

Synopsis:

#include <qplayer/types.h>

class PlayerState {

public:
 enum PlayerStatus {
 DESTROYED,
 IDLE,
 PLAYING,
 PAUSED,
 STOPPED
 };

 enum RepeatMode {
 QP_REPEAT_OFF,
 QP_REPEAT_ALL,
 QP_REPEAT_ONE
 };

 enum ShuffleMode {
 QP_SHUFFLE_OFF,
 QP_SHUFFLE_ON
 };

 ShuffleMode shuffle;
 RepeatMode repeat;
 PlayerStatus status;
 float rate;
} ;

Data:

ShuffleMode shuffle

Shuffle mode. Can be one of:

SHUFFLE_OFF

Shuffling is off; tracks will be played sequentially.

SHUFFLE_ON

Shuffling is on; tracks will be played in a random order.

RepeatMode repeat

Repeat mode. Can be one of:

Copyright © 2014, QNX Software Systems Limited 143

Media information data types

REPEAT_OFF

No tracks will be repeated (playback will stop when the end of the

active tracksession is reached).

REPEAT_ALL

All tracks will be repeated in the same order (playback will loop).

REPEAT_ONE

The current track will be continuously repeated.

PlayerStatus status

The player's status, which reflects its current playback support and activity.

Can be one of the following:

STATUS_DESTROYED

Reserved for future use.

STATUS_IDLE

The player is created but no tracksession is defined so playback

is currently not possible.

STATUS_PLAYING

A track is currently playing.

STATUS_PAUSED

Playback is paused.

STATUS_STOPPED

Playback is stopped, no track is selected, or an error has occurred.

float rate

Playback rate (i.e., the speed of playback).

Library:

libqplayer

Description:

Stores playback status properties. This class defines enumerations that specify the

possible settings for a player's status and its repeat and shuffle modes. When examining

144 Copyright © 2014, QNX Software Systems Limited

QPlayer API

the fields that store these settings in a PlayerState object, your code can compare

the field values to specific enumeration constants, making it more readable.

Track

Stores properties describing the currently selected track within a tracksession.

Synopsis:

#include <qplayer/types.h>

class Track {

public:
 int index;
 uint64_t tsid;
 MediaNode mediaNode;
 Metadata metadata;
};

Data:

int index

Position of the track within the tracksession.

uint64_t tsid

ID of the associated tracksession.

MediaNode mediaNode

Media node on which this track is based.

Metadata metadata

Track metadata.

Library:

libqplayer

Description:

Stores properties describing the currently selected track within a tracksession.

Copyright © 2014, QNX Software Systems Limited 145

Media information data types

TrackSession

Stores the ID and length of a tracksession.

Synopsis:

#include <qplayer/types.h>

class TrackSession {

public:
 uint64_t id;
 int length;
};

Data:

uint64_t id

Tracksession ID.

int length

Number of tracks within the tracksession.

Library:

libqplayer

Description:

Stores the ID and length of a tracksession.

146 Copyright © 2014, QNX Software Systems Limited

QPlayer API

QPlayer class

Sends media commands to mm-player and emits signals for media state changes.

Synopsis:

#include <qplayer/qplayer.h>

namespace QPlayer {

 static const QString ROOT_MEDIA_NODE_ID =
 QStringLiteral("/");

 class QPLAYER_EXPORT QPlayer : public QObject
 {
 Q_OBJECT

 public:

 explicit QPlayer(const QString playerName,
 QObject *parent = 0);

 ~QPlayer();

 void getMediaSources(MediaSourcesCommand *command);

 void getPlayerState(PlayerStateCommand *command);

 void getCurrentTrack(CurrentTrackCommand *command);

 void getCurrentTrackPosition(
 CurrentTrackPositionCommand *command);

 void browse(BrowseCommand *command);

 void search(SearchCommand *command);

 void getMetadata(MetadataCommand *command);

 void getExtendedMetadata(
 ExtendedMetadataCommand *command);

 void createTrackSession(
 CreateTrackSessionCommand *command);

 int destroyTrackSession(uint64_t tsid);

 void getTrackSessionItems(
 TrackSessionItemsCommand *command);

 void getCurrentTrackSessionInfo(
 TrackSession *trackSession);

 public Q_SLOTS:

 void play();

 void pause();

Copyright © 2014, QNX Software Systems Limited 147

QPlayer class

 void stop();

 void next();

 void previous();

 void seek(const int position);

 void jump(const int index);

 void setPlaybackRate(const float rate);

 void setShuffleMode(const PlayerState::ShuffleMode
mode);

 void setRepeatMode(const PlayerState::RepeatMode mode
);

 Q_SIGNALS:

 void playerReady();

 void mediaSourceChanged(
 const MediaSourceEventType type,
 const MediaSource &mediaSource);

 void trackChanged(Track track);

 void trackPositionChanged(int trackPosition);

 void trackSessionChanged(TrackSessionEventType type,

 TrackSession trackSession);

 void playerStateChanged(PlayerState playerState);

 };

}

Library:

libqplayer

Description:

Sends media commands to mm-player and emits signals for media state changes.

The QPlayer class is the main class that your apps use to interact with the QPlayer

library.

When creating QPlayer objects, you must name the player you want to connect with.

The reference HMI uses the same player in the Media Player app (which provides

visual media controls) and the ASR subsystem (which supports voice commands related

to media). For more information about players, see the mm_player_open() function in

the Multimedia Player Developer's Guide.

The new QPlayer object waits (if necessary) until mm-player is ready before trying

to open the specified player. If successful, it emits the playerReady signal. You can

148 Copyright © 2014, QNX Software Systems Limited

QPlayer API

then use the object to browse media sources, retrieve metadata, create tracksessions,

and manage playback. The object will emit signals when the player's state changes.

If it can't open the player, the QPlayer library logs an error.

Results-based media commands, such as media node searches or metadata retrieval

requests, use command classes (p. 119). This means you must specify operation details

(e.g., which folder to search) in a command object, which the library also uses to

return the results. For commands that retrieve state information (e.g., player status

or information on the current track), the command object is used only for returning

results. Note that you must wait for any command object to emit a complete signal

before retrieving the operation results; otherwise, the results will be empty.

Playback functions don't require command objects because they carry out relatively

basic actions, such as starting and stopping playback or changing tracks. All playback

functions are implemented as Qt slots, so you can connect them to signals so that

they run in response to user actions. For example, you can connect playback functions

to signals emitted by a GUI after the user taps an HMI button.

This class also defines signals that, when emitted, indicate changes to:

• media source connections

• the active tracksession

• the track selected for playback

• the playback position

• the state of the underlying player

Public constants used by QPlayer

Constants used by the QPlayer class to specify special folders for browsing.

ROOT_MEDIA_NODE_ID

The root media node ID for all media sources.

Synopsis:

#include <qplayer/qplayer.h>

static const QString ROOT_MEDIA_NODE_ID = QStringLiteral("/");

Description:

The root media node ID for all media sources.

Copyright © 2014, QNX Software Systems Limited 149

QPlayer class

Public functions in QPlayer

Functions defined in the QPlayer class for exploring media sources, reading metadata,

defining tracksessions, and controlling playback.

browse()

Browse a media source for media nodes.

Synopsis:

#include <qplayer/qplayer.h>

void browse(BrowseCommand *command);

Arguments:

command

A pointer to a BrowseCommand object that specifies the folder to browse

and other operation parameters. This object will also hold the operation

results (i.e., the media nodes found while browsing).

Description:

Browse a media source for media nodes. The underlying player browses the folder

media node indicated by the BrowseCommand (p. 121) object.

The media nodes found during browsing are stored in this same object. When your

client receives the complete signal, it can call the result() function on this object to

retrieve the media node information. Note that media nodes in the results can be

folders (which can contain other media nodes) or individual media files such as audio

tracks, videos, or photos.

createTrackSession()

Create a tracksession from a media node.

Synopsis:

#include <qplayer/qplayer.h>

void createTrackSession(CreateTrackSessionCommand *command);

Arguments:

command

150 Copyright © 2014, QNX Software Systems Limited

QPlayer API

A pointer to a CreateTrackSessionCommand object that specifies

operation parameters such as the media node for creating the tracksession.

The TrackSession object created to represent the new tracksession is

then written to the object referenced in this argument.

Description:

Create a tracksession from a media node. A tracksession is a sequence of tracks with

a particular playback order. The new tracksession is filled with the tracks (i.e., media

nodes) found within the path of the media node specified in the

CreateTrackSessionCommand (p. 122) object.

Information on the newly created tracksession is stored in this same object. When

your client receives the complete signal, it can call the result() function on this object

to retrieve that information.

destroyTrackSession()

Destroy a tracksession.

Synopsis:

#include <qplayer/qplayer.h>

int destroyTrackSession(uint64_t tsid);

Arguments:

tsid

The ID of the tracksession to destroy.

Description:

Destroy a tracksession.

Returns:

Returns 0 when the tracksession was destroyed successfully, -1 if there was an error.

getCurrentTrack()

Get information about the track currently selected for playback.

Synopsis:

#include <qplayer/qplayer.h>

void getCurrentTrack(CurrentTrackCommand *command);

Copyright © 2014, QNX Software Systems Limited 151

QPlayer class

Arguments:

command

A pointer to a CurrentTrackCommand object, which will hold information

on the current track.

Description:

Get information about the track currently selected for playback. The library fills in the

CurrentTrackCommand (p. 124) object referenced in command with information

describing the current track. When your client receives the complete signal, it can call

the result() function on this object to retrieve that information.

getCurrentTrackPosition()

Get the playback position of the current track.

Synopsis:

#include <qplayer/qplayer.h>

void getCurrentTrackPosition(
 CurrentTrackPositionCommand *command);

Arguments:

command

A pointer to a CurrentTrackPositionCommand object, which will hold

the current playback position.

Description:

Get the playback position of the current track. The library fills in the

CurrentTrackPositionCommand (p. 125) object referenced in command with the current

playback position. When your client receives the complete signal, it can call the result()

function on this object to retrieve that position.

getCurrentTrackSessionInfo()

Get information about the active tracksession.

Synopsis:

#include <qplayer/qplayer.h>

void getCurrentTrackSessionInfo(
 TrackSessionInfoCommand *command);

152 Copyright © 2014, QNX Software Systems Limited

QPlayer API

Arguments:

command

A pointer to a TrackSessionInfoCommand object, which will hold

information on the active tracksession.

Description:

Get information about the active tracksession. The library fills in the

TrackSessionInfoCommand (p. 132) object referenced in command with tracksession

information. When your client receives the complete signal, it can call the result()

function on this object to retrieve that information.

getExtendedMetadata()

Get extended metadata associated with a media node.

Synopsis:

#include <qplayer/qplayer.h>

void getExtendedMetadata(ExtendedMetadataCommand *command);

Arguments:

command

A pointer to an ExtendedMetadataCommand object that specifies the

media node being read and which of its fields are being read. The extended

metadata values are written to this object.

Description:

Get extended metadata associated with a media node. Here, extended metadata refers

to nonstandard metadata values, such as the URL of a media node, that aren't returned

by getMetadata(). The ExtendedMetadataCommand (p. 126) object referenced in

command contains the IDs of the node to read and of the media source where the

node is located as well as the fields to read.

The extended metadata values extracted from the media node are stored in this same

object. When your client receives the complete signal, it can call the result() function

on this object to retrieve those values.

Copyright © 2014, QNX Software Systems Limited 153

QPlayer class

getMediaSources()

Get a list of all connected media sources.

Synopsis:

#include <qplayer/qplayer.h>

void getMediaSources(MediaSourcesCommand *command);

Arguments:

command

A pointer to a MediaSourcesCommand object, which will hold the list of

media sources.

Description:

Get a list of all connected media sources. The library fills in the MediaSourcesCommand

(p. 127) object referenced in command with information describing each connected

media source. When your client receives the complete signal, it can call the result()

function on this object to retrieve that information.

getMetadata()

Get metadata associated with a media node.

Synopsis:

#include <qplayer/qplayer.h>

void getMetadata(MetadataCommand *command);

Arguments:

command

A pointer to a MetadataCommand object that specifies the media node

being read. The node's metadata values are then written to the same object.

Description:

Get metadata associated with a media node. The MetadataCommand (p. 128) object

referenced in command contains the node to read metadata from and the media source

where the node is located.

This same object stores the metadata values extracted from the media node. When

your client receives the complete signal, it can call its result() function to retrieve

154 Copyright © 2014, QNX Software Systems Limited

QPlayer API

those values. Note that the metadata read depends on the type of the media node.

For example, an audio track has an artist name and genre but not a width or height.

Video and photo files, however, do have those last two fields.

getPlayerState()

Get the current player state.

Synopsis:

#include <qplayer/qplayer.h>

void getPlayerState(PlayerStateCommand *command);

Arguments:

command

A pointer to a PlayerStateCommand object, which will hold information

on the player state.

Description:

Get the current player state. The library fills in the PlayerStateCommand (p. 129) object

referenced in command with information describing the player's state. When your

client receives the complete signal, it can call the result() function on this object to

retrieve that information.

getTrackSessionItems()

Get the media nodes of the items in a tracksession.

Synopsis:

#include <qplayer/qplayer.h>

void getTrackSessionItems(
 TrackSessionItemsCommand *command);

Arguments:

command

A pointer to a TrackSessionItemsCommand object that specifies the

tracksession being read. A list of media nodes corresponding to the

tracksession's items is then written to this object.

Copyright © 2014, QNX Software Systems Limited 155

QPlayer class

Description:

Get the media nodes of the items in a tracksession. The ID of the tracksession being

read is specified in the TrackSessionItemsCommand (p. 133) object.

The media nodes corresponding to the tracksession items are stored in this same

object. When your client receives the complete signal, it can call the result() function

on this object to retrieve those media nodes.

QPlayer()

Create a QPlayer instance, opening the specified player.

Synopsis:

#include <qplayer/qplayer.h>

explicit QPlayer(const QString playerName,
 QObject *parent = 0);

Arguments:

playerName

The name of the player to open.

parent

A pointer to the parent QObject. This parameter links a QPlayer to a

QObject (or a subtype) so the new child object gets deleted when its parent

is deleted. By default, no parent is assigned.

Description:

Create a QPlayer instance, opening the player specified in playerName. This player

is managed by the mm-player service and carries out the media requests sent by

the client through the QPlayer object.

~QPlayer()

Destroy the QPlayer object.

Synopsis:

#include <qplayer/qplayer.h>

~QPlayer();

Description:

Destroy the QPlayer object.

156 Copyright © 2014, QNX Software Systems Limited

QPlayer API

search()

Search a media source for media nodes that have metadata matching a search string.

Synopsis:

#include <qplayer/qplayer.h>

void search(SearchCommand *command);

Arguments:

command

A pointer to a SearchCommand object that specifies the media source to

search, the search string for filtering the results, and other operation

parameters. This object will return the operation results (i.e., the results

media node) when requested.

Description:

Search a media source for media nodes that have metadata matching a search string.

The media source to search, the search string, and the metadata fields to compare

against the search string are specified in the SearchCommand (p. 130) object referenced

in command.

The search operation returns a single results node, which you must then browse to

view the individual media nodes in the results. When your client receives the complete

signal, it can call the result() function on the command object to retrieve the results

node. Note that the search results may include all types of media files—audio tracks,

videos, and photos.

Public slots in QPlayer

Slots defined in the QPlayer class for controlling playback.

jump()

Jump to another track in the active tracksession.

Synopsis:

#include <qplayer/qplayer.h>

void jump(const int index);

Arguments:

index

Copyright © 2014, QNX Software Systems Limited 157

QPlayer class

The index of the newly selected track in the active tracksession.

Description:

Jump to another track in the active tracksession. This function changes the “current”

track (i.e., the tracksession item selected for playback) to the track at position index.

If playback is active when this function is called, the player starts playing the track

immediately. If playback isn't active, the track will be played when playback resumes.

next()

Skip to the next track in the tracksession.

Synopsis:

#include <qplayer/qplayer.h>

void next();

Description:

Skip to the next track in the tracksession. The track considered the “next track”

depends on the shuffle (p. 144) and repeat (p. 144) settings.

When the repeat mode is REPEAT_ONE or REPEAT_OFF, the next track is the track

immediately following the current track in either the sequential playback list (if

shuffling is off) or in the randomized list (if shuffling is on). If the current track is the

last track in the list, playback stops (because there's no next track).

When the repeat mode is REPEAT_ALL, the function behaves similarly except that if

the current track is the last track, the next track is the first track in the list (because

playback is looped).

pause()

Pause playback.

Synopsis:

#include <qplayer/qplayer.h>

void pause();

Description:

Pause playback. Calling this function changes the player status (p. 144) to

STATUS_PAUSED but maintains the current playback position. This way, you can

resume playback at the exact position where you paused it.

158 Copyright © 2014, QNX Software Systems Limited

QPlayer API

play()

Begin or resume playback.

Synopsis:

#include <qplayer/qplayer.h>

void play();

Description:

Begin or resume playback. Calling this function changes the player status (p. 144) to

STATUS_PLAYING. This status setting remains in effect until either you pause playback

or the end of the tracksession is reached and repeating is disabled.

The track that begins playing is the one selected as the “current” track in the active

tracksession. When this track finishes playing, the player chooses a new track to play

based on its shuffle (p. 144) and repeat (p. 144) settings. To see which track is currently

selected, call getCurrentTrack() (p. 151). To see the current playback position, call

getCurrentTrackPosition() (p. 152).

previous()

Skip to the previous track in the tracksession.

Synopsis:

#include <qplayer/qplayer.h>

void previous();

Description:

Skip to the previous track in the tracksession. The track considered the “previous

track” depends on the shuffle (p. 144) and repeat (p. 144) settings.

When the repeat mode is REPEAT_ONE or REPEAT_OFF, the previous track is the

track immediately preceding the current track in either the sequential playback list

(if shuffling is off) or in the randomized list (if shuffling is on). If the current track is

the first track in the list, playback stops (because there's no previous track).

When the repeat mode is REPEAT_ALL, the function behaves similarly except that if

the current track is the first track, the previous track is the last track in the list (because

playback is looped).

Copyright © 2014, QNX Software Systems Limited 159

QPlayer class

seek()

Seek to a position within the current track.

Synopsis:

#include <qplayer/qplayer.h>

void seek(const int position);

Arguments:

position

The new track position (in milliseconds from the start of the track).

Description:

Seek to a position within the current track. The value in position is the number of

milliseconds from the start of the track (e.g., 2500).

setPlaybackRate()

Set the playback rate.

Synopsis:

#include <qplayer/qplayer.h>

void setPlaybackRate(const float rate);

Arguments:

rate

The new playback rate, relative to a normal rate of 1.0.

Description:

Set the playback rate (speed). The floating-point value in rate is relative to a normal

rate of 1.0. A value of 0 pauses playback. Negative numbers cause the media to play

in reverse.

160 Copyright © 2014, QNX Software Systems Limited

QPlayer API

setRepeatMode()

Set the player's repeat mode.

Synopsis:

#include <qplayer/qplayer.h>

void setRepeatMode(const PlayerState::RepeatMode mode);

Arguments:

mode

The new repeat mode.

Description:

Set the player's repeat mode. The repeat mode (p. 144) allows you to repeatedly play

an individual track or a sequence of tracks.

The REPEAT_ONE mode causes the player associated with the QPlayer object to

play the same track continuously until you either stop playback or skip to another

track.

The REPEAT_ALL mode makes the player play all the tracks in the active tracksession

and then loop back to the beginning of the tracksession. The playback order is either

sequential (when shuffling is off) or random (when shuffling is on).

If the repeat mode is REPEAT_OFF, the player plays all the tracks exactly once but

stops when it reaches the end of the tracksession. By default, the repeat mode is

REPEAT_OFF.

setShuffleMode()

Set the player's shuffle mode.

Synopsis:

#include <qplayer/qplayer.h>

void setShuffleMode(const PlayerState::ShuffleMode mode);

Arguments:

mode

The new shuffle mode.

Copyright © 2014, QNX Software Systems Limited 161

QPlayer class

Description:

Set the player's shuffle mode. The shuffle mode (p. 144) determines which of two lists

the player associated with the QPlayer object uses to select the next track for

playback.

When the mode is SHUFFLE_ON, the player uses a randomized track list, which indexes

tracks in an order different from their order in the media source. For example, when

the track listed as number 2 on its album finishes playing, the next track played could

be any other track on the album (including the track listed as number 3).

When the mode is SHUFFLE_OFF, the player uses the sequential track list, which

reflects the track order in the media source. In this case, when track number 2 finishes

playing, track number 3 will play next.

When you set the mode to SHUFFLE_ON, the player generates a new randomized

playback list. So you can keep randomized playback enabled and just change to a

different random order by calling this function multiple times with this setting. By

default, the shuffle mode is set to SHUFFLE_OFF.

stop()

Stop playback.

Synopsis:

#include <qplayer/qplayer.h>

void stop();

Description:

Stop playback. Calling this function changes the player status (p. 144) to

STATUS_STOPPED and resets the playback position. When you resume playback, the

currently selected track will begin playing from the start again. While playback is

stopped, you can change the current track if you want to play something different

when playback resumes.

162 Copyright © 2014, QNX Software Systems Limited

QPlayer API

Signals in QPlayer

Signals emitted by QPlayer objects for indicating changes to media source

connections, the active tracksession, the current track, the playback position, and the

player state.

mediaSourceChanged()

Emitted when a media source was added, removed, or modified.

Synopsis:

#include <qplayer/qplayer.h>

void mediaSourceChanged(const MediaSourceEventType type,
 const MediaSource &mediaSource);

Arguments:

type

The media source event type.

mediaSource

The media source that the event applies to.

Description:

Emitted when a media source was added, removed, or modified. The event type is

stored in type, as a constant defined by the MediaSourceEventType (p. 116)

enumeration. The object in mediaSource stores information on the media source that

the event applies to.

playerReady()

Emitted when the underlying player has been initialized

Synopsis:

#include <qplayer/qplayer.h>

void playerReady();

Description:

Emitted when the underlying player has been initialized. Your client must wait for this

signal before issuing any commands through the object. Any new QPlayer object

must wait for the mm-player service to be flagged as ready before trying to open a

Copyright © 2014, QNX Software Systems Limited 163

QPlayer class

connection to the player. After the object successfully opens the player connection,

it emits the playerReady() signal.

playerStateChanged()

Emitted when a configuration setting or the playback status has changed for a player.

Synopsis:

#include <qplayer/qplayer.h>

void playerStateChanged(PlayerState playerState);

Arguments:

playerState

The updated state of the player, which includes its latest shuffle mode,

repeat mode, playback rate, and playback status (e.g., PLAYING, IDLE).

Description:

Emitted when a configuration setting or the playback status has changed for a player.

The object in playerState stores the latest state information of the affected player.

trackChanged()

Emitted when a new track is selected for playback.

Synopsis:

#include <qplayer/qplayer.h>

void trackChanged(Track track);

Arguments:

track

The new “current” track, which is either playing now or will be played when

playback resumes.

Description:

Emitted when a new track is selected for playback. This happens when the user skips

to another tracksession item or when the player moves to another track automatically,

either because the previous track finished playing or a playback error occurred. In all

these cases, the object in track contains information on the newly selected track.

164 Copyright © 2014, QNX Software Systems Limited

QPlayer API

trackPositionChanged()

Emitted when the current track's playback position was changed.

Synopsis:

#include <qplayer/qplayer.h>

void trackPositionChanged(int trackPosition);

Arguments:

trackPosition

The new playback position (in milliseconds from the start of the track).

Description:

Emitted when the current track's playback position was changed. The new playback

position is stored in trackPosition.

trackSessionChanged()

Emitted when a tracksession was created, destroyed, or appended to.

Synopsis:

#include <qplayer/qplayer.h>

void trackSessionChanged(TrackSessionEventType type,
 TrackSession trackSession);

Arguments:

type

The tracksession event type.

trackSession

The updated information for the tracksession that the event applies to.

Description:

Emitted when a tracksession was created, destroyed, or appended to. The event type

is stored in type, as a constant defined by the TrackSessionEventType (p. 117)

enumeration. The object in trackSession stores information on the tracksession that

the event applies to.

Copyright © 2014, QNX Software Systems Limited 165

QPlayer class

Index

A

app descriptor file 44, 45, 46, 55
app permissions 55
elements 46
QNX CAR environment variables 45
writing 44

B

BAR files 59, 62, 66
deploying on the target 66
generating from Qt Creator 59
generating from the command line 62
packaging tool 59

BaseCommand class 120
specification 120

blackberry-nativepackager 62, 63, 64, 65
command line example 62
command-line commands 63
command-line other options 64
command-line packaging options 63
command-line path options 64
command-line syntax 63
command-line variables 64
packaging a Qt app 62
sample command line 65
tool name and location 62

BrowseCommand class 121
specification 121

C

Changeset structure 76
CreateTrackSessionCommand class 122

specification 122
Creating and deploying Qt apps, See Qt app lifecycle overview
CurrentTrackCommand class 124

specification 124
CurrentTrackPositionCommand class 125

specification 125

D

DirWatcher class 77, 78, 80
functions 78
signals 80
specification 77

E

Error codes enum 116

H

host system 15
definition 15
preparing for Qt app development 15
prerequisites 15

M

MediaNode class 135
MediaSource class 137
MediaSourceEventType enum 116
MediaSourcesCommand class 127

specification 127
Metadata class 141
MetadataCommand class 126, 128

specification 126, 128

O

Object class 82, 83, 88, 89, 90
functions 83
properties 88
signals 90
slots 89
specification 82

P

PlayerState class 143
PlayerStateCommand class 129

specification 129

Q

QNX QDF 16
installing 16

QPlayer class 147, 149, 150, 157, 163
constants 149
functions 150
signals 163
slots 157
specification 147

QPlayer library 14, 115, 116, 117, 119, 120, 121, 122,
124, 125, 126, 127, 128, 129, 130, 132, 133,
135, 137, 141, 143, 145, 146, 147

API 115
classes 120, 121, 122, 124, 125, 126, 127, 128, 129,

130, 132, 133, 147
BaseCommand, See BaseCommand class
BrowseCommand, See BrowseCommand class
CreateTrackSessionCommand, See
CreateTrackSessionCommand class
CurrentTrackCommand, See CurrentTrackCommand
class

Copyright © 2014, QNX Software Systems Limited 167

Qt Development Environment

QPlayer library (continued)
classes (continued)

CurrentTrackPositionCommand, See
CurrentTrackPositionCommand class
MediaSourcesCommand, See MediaSourcesCommand
class
MetadataCommand, See MetadataCommand class
PlayerStateCommand, See PlayerStateCommand class
QPlayer, See QPlayer class
SearchCommand, See SearchCommand class
TrackSessionInfoCommand, See
TrackSessionInfoCommand class
TrackSessionItemsCommand, See
TrackSessionItemsCommand class

Error and event type enumerations 116, 117
Error codes 116
MediaSourceEventType 116
TrackSessionEventType 117

introduction 14
Media command classes 119
Media information data types 135, 137, 141, 143, 145,

146
MediaNode, See MediaNode class
MediaSource, See MediaSource class
Metadata, See Metadata class
PlayerState, See PlayerState class
Track, See Track class
TrackSession, See TrackSession class

QPPS library 12, 75, 76, 77, 82, 93, 104
API 75
classes 77, 82, 93, 104

DirWatcher, See DirWatcher class
Object, See Object class
Simulator, See Simulator class
Variant, See Variant class

introduction 12
structures 76

Changeset, See Changeset structure
Qt app lifecycle 35, 36, 38, 40, 42, 43, 44, 59, 66, 72

adding an image for the app icon 43
adding code to load the UI 42
cleaning the target before redeploying a BAR file 72
creating a project 36
creating a Qt app 36
defining the UI 38
deploying the BAR file on the target 66
generating the BAR file 59

Qt app lifecycle (continued)
making a QML file into a project resource 40
overview 35
writing the app descriptor file 44

Qt Creator 18, 19, 25
configuring a QNX device 19
configuring a toolchain 25
configuring the build and run environment 25
installing 18

Qt framework 9
Qt libraries 9

QPlayer 9
QPPS 9
QtQnxCar2 9

QtQnxCar2 library 11
API 11
introduction 11

S

SearchCommand class 130
specification 130

Simulator class 93, 94, 101
functions 94
signals 101
specification 93

T

target system 15
definition 15

Technical support 8
Track class 145
TrackSession class 146
TrackSessionEventType enum 117
TrackSessionInfoCommand class 132

specification 132
TrackSessionItemsCommand class 133

specification 133
Typographical conventions 6

V

Variant class 104, 105
functions 105
specification 104

168 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	QNX Qt Development Libraries
	QtQnxCar2 Library
	QPPS Library
	QPlayer Library

	Preparing your host system for Qt development
	Installing QNX QDF
	Installing Qt Creator
	Configuring a QNX device in Qt Creator
	Configuring a toolchain in Qt Creator

	Creating and running Qt apps in QNX CAR systems
	Creating a project for a new Qt App
	Defining the user interface
	Making a QML file into a project resource
	Adding code to load the UI
	Adding an image for the app icon
	Writing the app descriptor file
	QNX CAR environment variables
	XML elements in app descriptor file
	App permissions

	Packaging the app into a BAR file from Qt Creator
	Packaging the BAR file from the command line
	Qt command-line options for blackberry-nativepackager

	Deploying the BAR file on the target
	Running the app
	Cleaning the target before redeploying a BAR file

	QPPS API
	Changeset
	DirWatcher
	Public functions in DirWatcher
	DirWatcher()
	~DirWatcher()
	errorString()
	isValid()
	objectNames()
	path()

	Signals in DirWatcher
	objectAdded()
	objectRemoved()

	Object
	Public functions in Object
	attribute()
	attributeCacheEnabled()
	attributeNames()
	errorString()
	isValid()
	Object()
	~Object()
	path()
	setAttributeCacheEnabled()
	setAttributes()

	Public properties of Object
	PublicationMode

	Public slots in Object
	removeAttribute()
	setAttribute()

	Signals in Object
	attributeChanged()
	attributesChanged()
	attributeRemoved()
	objectRemoved()

	Simulator
	Public functions in Simulator
	clientGetAttribute()
	clientGetAttributeNames()
	clientRemoveAttribute()
	clientSetAttribute()
	dumpTree()
	insertAttribute()
	insertObject()
	ppsObjects()
	registerClient()
	reset()
	self()
	triggerInitialListing()
	unregisterClient()

	Signals in Simulator
	attributeChanged()
	attributeRemoved()
	clientConnected()
	clientDisconnected()
	objectAdded()

	Variant
	Public functions in Variant
	encoding()
	isValid()
	toBool()
	toByteArray()
	toDouble()
	toInt()
	toJson()
	toString()
	value()
	Variant()
	Variant(bool)
	Variant(double)
	Variant(int)
	Variant(QByteArray)
	Variant(QJsonDocument)
	Variant(QJsonObject)
	Variant(QString)
	Variant(QByteArray,QByteArray)
	operator==
	operator!=

	QPlayer API
	Error and event type enumerations
	Error codes enum
	MediaSourceEventType
	TrackSessionEventType

	Media command classes
	BaseCommand
	BrowseCommand
	CreateTrackSessionCommand
	CurrentTrackCommand
	CurrentTrackPositionCommand
	ExtendedMetadataCommand
	MediaSourcesCommand
	MetadataCommand
	PlayerStateCommand
	SearchCommand
	TrackSessionInfoCommand
	TrackSessionItemsCommand

	Media information data types
	MediaNode
	MediaSource
	Metadata
	PlayerState
	Track
	TrackSession

	QPlayer class
	Public constants used by QPlayer
	ROOT_MEDIA_NODE_ID

	Public functions in QPlayer
	browse()
	createTrackSession()
	destroyTrackSession()
	getCurrentTrack()
	getCurrentTrackPosition()
	getCurrentTrackSessionInfo()
	getExtendedMetadata()
	getMediaSources()
	getMetadata()
	getPlayerState()
	getTrackSessionItems()
	QPlayer()
	~QPlayer()
	search()

	Public slots in QPlayer
	jump()
	next()
	pause()
	play()
	previous()
	seek()
	setPlaybackRate()
	setRepeatMode()
	setShuffleMode()
	stop()

	Signals in QPlayer
	mediaSourceChanged()
	playerReady()
	playerStateChanged()
	trackChanged()
	trackPositionChanged()
	trackSessionChanged()

	Index

