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About This Guide

The Multimedia Detector Configuration Guide is aimed at users of the QNX CAR

Platform for Infotainment who want to understand how the mm-detect service

discovers media devices and initiates the uploading of their metadata to persistent

storage. Knowing how mm-detect works is essential if you want to reconfigure the

service to customize its behavior.

This table may help you find what you need in this guide:

Go to:To find out about:

Multimedia Detector Overview (p. 9)The role of mm-detect in car

infotainment systems and the components

it uses

Running mm-detect (p. 15)Starting mm-detect automatically during

bootup

mm-detect command line (p. 21)The command-line syntax for starting

mm-detect

Device tracking and media information

management (p. 23)

The procedure used by mm-detect to

respond to device insertions and removals

Copyright © 2014, QNX Software Systems Limited 5



Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if( stream == NULL )Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.
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Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7
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Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.
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About This Guide

http://www.qnx.com


Chapter 1
Multimedia Detector Overview

The multimedia detector service, mm-detect, keeps track of which devices are attached

to a car's infotainment system and triggers the synchronization of device metadata

with QDB databases.

The mm-detect service ensures that HMI applications can display up-to-date media

information to the end user, while relieving those applications from having to constantly

monitor devices and synchronize databases.

Detecting devices, retrieving their media information, and delivering that information

to HMI applications involves several low-level device management and data publishing

tasks. However, mm-detect doesn't perform most of these tasks. Instead, the service

relies on the following components:

Device publishers

Inform mm-detect through the Persistent Publish/Subscribe (PPS) service

of device attachments and detachments.

Media content detector (mcd)

Mounts filesystems of attached devices so their contents can be read by

multimedia services and other programs.

mm-sync

Synchronizes the contents of QDB databases with the latest media metadata

on attached devices.

CAR HMI

Monitors PPS for synchronization statuses published by mm-detect and

queries device databases to obtain up-to-date media information for

displaying to the end user.

Copyright © 2014, QNX Software Systems Limited 9



Components used to retrieve media information

Several CAR components—device publishers, mcd, mm-sync, and the CAR HMI—work

with each other and with mm-detect to automate the process of detecting devices

and delivering up-to-date media information to the end user.

Device publishers

Device publishers are hardware-support components that detect device attachments

and, in response, write PPS objects to the /pps/qnx/mount/ directory. We refer to

this fixed location as the device listings directory. For information on the PPS service,

see the PPS Developer's Guide.

For each media device, the appropriate device publisher creates a dedicated PPS

object to hold that device's information, which includes its mountpoint and filesystem

information. For example, when the user inserts a USB stick whose device name is

usb1, the usblauncher publisher creates a PPS object named

/pps/qnx/mount/usb1. When the user removes the device, the same publisher

deletes the PPS object.

When the user attaches a USB device that doesn't have any partitions but does have

a single, mountable filesystem, usblauncher writes the device mountpoint to one

PPS object whose name matches that of the device. If the USB device has partitions,

the publisher writes the mountpoints of the various partition filesystems to distinct

PPS objects. The names of these objects contain the partition indexes.

Media content detector (mcd)

The media content detector utility (mcd) enumerates and mounts devices and their

partitions. The mcd service doesn't interact with mm-detect; instead, mcd runs as a

background process and continuously monitors the /dev/ directory for new entries,

which indicate device attachments. When it notices a device attachment, mcd

enumerates and mounts the device's partitions based on the rules encoded in a special

text file (by default, /etc/mcd.mnt).

The mount rules indicate the mountpoints to use for specific device objects (/dev/

entries). Device drivers create and name these objects based on partition properties

such as filesystem type. For example, for an inserted USB mass storage device with

distinct DOS and QNX4 partitions, the USB driver could create the device objects

/dev/umass/umass0t1 and /dev/umass/umass0t7. The mcd service could then

assign mountpoints of /fs/usb0 and /fs/usb1 for these two partitions. For further

explanation of mount rules and a sample mcd.mnt rules file, see the mcd section in

the Utilities Reference.
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The mcd service sends mount requests to the appropriate device drivers (e.g., the USB

driver for mounting a USB stick), which manage the mountpoint paths. Each device

publisher regularly polls its corresponding device driver to learn of any new mountpoints,

which it then writes to the PPS objects in the device listings directory.

Multimedia synchronizer (mm-sync)

The multimedia synchronizer service, mm-sync, uploads media metadata from attached

devices into QDB databases. Each device has its own QDB database that stores

metadata on the device's media contents. For information on the QDB database service

and the storage standard used for its databases, see the QDB Developer's Guide.

The first time a device is attached to the in-car system, mm-detect loads and

initializes the device's database before invoking mm-sync to start the synchronization.

This action by mm-detect is necessary because although mm-sync can write to

databases, it can't load or unload them.

When a device is attached at any time, mm-detect instructs mm-sync to synchronize

media content from the entire device, starting from the root folder and descending

into all subfolders systematically. The device's filesystem is accessed from the

mountpoint previously set up by mcd. The command sent to mm-sync also instructs

it to upload file information and creation and playback information for media tracks,

but not playlist entry information.

CAR HMI

The CAR HMI consists of many applications that provide users with a visually rich

front end for interacting with their in-car system. This release contains a media app

(Media Player) that reads the synchronization statuses published by mm-detect

through PPS and refreshes the list of media sources shown in the HMI as needed.

You can write your own media applications to replace or run alongside Media Player.

These applications can read the same PPS object that Media Player reads for

synchronization status updates. The information published in this object includes the

device's name and media type, and a flag indicating whether the device has been

synchronized.

Your applications can extract as much of this information as they need to refresh their

HMI display. By default, mm-detect stores this object in

/pps/services/mm-detect/, but you can reconfigure which directory this object

is stored in.

Copyright © 2014, QNX Software Systems Limited 11
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Deciding whether to run mm-detect

You can choose whether or not to run mm-detect in your car system. The mm-detect

service is a convenience feature for automating the delivery of media information to

client applications, but clients can also obtain this information manually.

By default, mm-detect is running on QNX CAR systems. The mm-detect process

is started at boot time by the System Launch Monitor (SLM) service. You can modify

the SLM configuration file (/etc/slm-config-all.xml) to prevent mm-detect

from being started, as explained in the Preventing mm-detect from running (p. 18)

section.

When to use mm-detect

You should use mm-detect if you want to:

• simplify client applications so they don't have to constantly scan the device listings

directory to detect new devices and then manually load and synchronize the

databases for those devices

• guarantee that devices have all their media information synchronized as soon as

they're inserted

• guarantee that the media information for different devices is synchronized in the

same order in which those devices are inserted

• limit the number of QDB databases kept in memory by automatically unloading

device databases when the applications using them terminate

When not to use mm-detect

You should not use mm-detect and instead manage devices from client applications

if you want to:

• synchronize some but not all media information from an attached device; this can

improve performance by avoiding potentially expensive synchronizations of unneeded

media content

• control the order in which media information for different devices is synchronized,

to prioritize synchronizations in response to user actions

• defer synchronizing media information from a device until the client application

reaches a certain state (for example, its HMI has finished loading)

• prevent synchronizing media information from certain types of devices to enforce

an application policy or design

Detecting and synchronizing devices manually

To detect device insertions, a client application must constantly monitor the device

listings directory (/pps/qnx/mount/). For any new PPS object written into this

12 Copyright © 2014, QNX Software Systems Limited
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directory, the client must read the object's id and mount attributes to obtain the

device's unique ID and mountpoint. The unique ID is used to construct the database

device path and the name of the database configuration object.

Before it can synchronize any media metadata, the client must write the database

configuration object to the appropriate PPS directory (/pps/qnx/qdb/config/) to

load the database that stores media information for the newly inserted device. The

client can then pass the database device path and the mountpoint to the mm-sync

service to start synchronizing the device's media metadata.

For the full details on all the steps a client must perform to manually detect and

synchronize devices, see the “Synchronizing Multimedia Content” section of the

Multimedia Synchronizer Developer's Guide.

To use Media Player when you're not running mm-detect, you must modify

the application to manually detect devices and synchronize their media

metadata.

Copyright © 2014, QNX Software Systems Limited 13
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Customizing mm-detect

The mm-detect program shipped with the QNX CAR Platform for Infotainment provides

a basic service to synchronize all the media content from a device each time it's

attached. You can do this from your client applications or write a tool to replace

mm-detect, but you may find it most convenient to just reconfigure mm-detect to

change how media information gets synchronized.

You can customize the behavior of mm-detect through command options. For example,

you can name alternative schema files for defining and populating the databases that

hold media metadata.

If you use a nondefault database schema, you must modify the mm-sync

configuration file to redefine the mapping of metadata content to database

fields, based on your new schema. For details on the mm-sync configuration

file, see the Multimedia Synchronizer Developer's Guide.

To pass different command options to the mm-detect process when it's started, you

must change the configuration file used by the SLM utility, which launches mm-detect

during bootup. For instructions on specifying the mm-detect command line in the

SLM configuration file, see the Running mm-detect (p. 15) section.

14 Copyright © 2014, QNX Software Systems Limited
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Chapter 2
Running mm-detect

Client applications don't run the mm-detect service at specific times to perform media

tasks (like they do with other multimedia components). CAR systems use the System

Launch Monitor (SLM) service to automate starting mm-detect during bootup.

Applications can start mm-detect manually for recovery purposes.

Starting mm-detect with specific command options during bootup

SLM automates process management by launching processes in an order that respects

their interprocess dependencies. The list of processes to launch and their properties,

including their command-line arguments and interprocess dependencies, are written

in a configuration file (/etc/slm-config-all.xml). During bootup, SLM reads

this file and carries out its instructions when starting processes.

Using SLM to start mm-detect ensures that the system is ready to play media when

the HMI finishes booting and also that mm-detect runs with the same command

options and therefore behaves consistently from one bootup to the next. For the full

explanation of how SLM works, refer to “System Launch and Monitor (SLM)” in the

System Services Reference.

SLM is preconfigured to start mm-detect with certain command options but you can

change which command options it passes to mm-detect to suit the needs of your

CAR system and applications.

To change the command options passed to mm-detect:

1. From a command console connected to your CAR system, navigate to and open

the SLM configuration file, whose full path is /etc/slm-config-all.xml.

2. In the configuration file, locate the component that specifies the properties for

mm-detect.

This component is the <SLM:component> XML object with the name "mmde 

tect".

3. Change the value of the <SLM:args> tag in the "mmdetect" component to hold

the new set of command-line options to pass to mm-detect at startup.

For the full list of command-line options, see “mm-detect command line (p. 21)”.

4. Save the changes to the SLM configuration file and return to the console.

5. If you want the new configuration to take effect immediately, in the console, enter

reboot.
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The system reboots and the SLM utility relaunches all the processes, including

mm-detect, with their command options specified in the configuration file. When

the system finishes reloading, mm-detect is running with the new configuration.

If you don't reboot immediately after changing the configuration file, mm-detect

continues to run with its previous configuration until you shut down the system

and restart.

16 Copyright © 2014, QNX Software Systems Limited
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Restarting mm-detect manually

An application can restart mm-detect with an explicit command if mm-detect has

unexpectedly stopped and if the application can't proceed without automated media

detection and synchronization.

The exact conditions that require an application to restart mm-detect are:

• the mm-detect process has terminated abnormally

• the client is required, by design or user request, to ensure that all its media

information is up to date before refreshing its display

• the car infotainment system can't be rebooted to restart mm-detect with SLM

because doing so would be too disruptive to the user

To restart mm-detect manually, your application must:

1. Confirm that mm-detect isn't already running by checking the list of active

processes with the pidin or ps command.

2. Confirm that both the qdb and mm-sync processes are already running by checking

the same list of active processes.

The mm-detect process depends on both these other services, so if either one is

not running, that service must be started; otherwise, mm-detect won't do anything

when it runs.

3. Send the command line for running mm-detect with the desired command options

to the OS, using the system() or spawn() system call.

For details on the system calls that send commands to the OS, see the C Library

Reference. For the full list of command-line options, see the mm-detect command

line (p. 21) section.

The OS tries to run mm-detect and reports the operation outcome to sloginfo. If

sloginfo shows no error, mm-detect is now running.

Your system should run only one instance of mm-detect, so applications

relying on the service must coordinate with each other to avoid starting

mm-detect multiple times.

Copyright © 2014, QNX Software Systems Limited 17
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Preventing mm-detect from running

By default, mm-detect is running on CAR systems. If you decide to manually detect

and synchronize media devices in client applications, you must prevent SLM from

starting mm-detect during bootup by editing the SLM configuration file.

The version of the Media Player application shipped with the QNX CAR

Platform for Infotainment won't function properly if you don't run

mm-detect. To use Media Player without mm-detect, you must modify

the application to manually detect device attachments and synchronize

media metadata, as explained in “Detecting and synchronizing devices

manually (p. 12)”.

To prevent SLM from launching mm-detect:

1. From a command console connected to your CAR system, navigate to and open

the SLM configuration file, whose full path is /etc/slm-config-all.xml.

2. In the configuration file, locate the component that specifies the properties for

mm-detect.

This component is the <SLM:component> XML object with the name "mmde 

tect".

3. Disable the component by commenting it out (using the XML syntax of <!-- and

-->) or by deleting it.

4. Save the changes to the SLM configuration file.

In subsequent bootups of the car system, mm-detect won't be started.

18 Copyright © 2014, QNX Software Systems Limited
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mm-detect SLM specification

SLM uses an XML configuration file to store the list of processes to be automatically

launched and their properties. In QNX CAR systems, mm-detect and its prerequisite

and dependant programs are listed in the SLM configuration file. You can change the

configuration to run mm-detect with different settings.

The following excerpt from the SLM configuration file shows some of the property

settings for mm-detect:

<SLM:component name="mmdetect">
    <SLM:command>mm-detect</SLM:command>
    <SLM:args>-v</SLM:args>
    <SLM:depend>mmsync</SLM:depend>
    <SLM:depend>usblauncher</SLM:depend>
</SLM:component>

Here, the name "mmdetect" assigned to the <SLM:component> XML object is an

internal label used within the configuration file. This label differs from the process

name of mm-detect, which is provided in the <SLM:command> tag.

Command-line arguments

The <SLM:args> tag lists the command-line arguments. By default, only the verbosity

setting (-v) is specified, but you can change the value assigned to <SLM:args> to

include other options. The new mm-detect settings will take effect after you reboot

the car system, causing SLM to relaunch the service. See “Customizing mm-detect

(p. 14)” for instructions on changing the command settings for mm-detect.

Workflow

The <SLM:depend> objects list which processes must be running before mm-detect

can be started. Based on these listed dependencies, SLM must ensure that the

mm-sync and usblauncher processes are running before starting mm-detect.

The programs that are prerequisites to mm-detect have their own prerequisites. For

instance, mm-sync requires QDB to be running so that client applications can load

the media databases before mm-sync starts synchronizing device contents. The

interprocess dependencies between mm-detect and the programs it uses make up

a complex workflow of processes. The following is an illustration of part of this workflow:

Copyright © 2014, QNX Software Systems Limited 19
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mm-detect

mm-syncusblauncher

qdbpps-setup

Figure 1: Workflow of mm-detect and related processes
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mm-detect command line

Start the multimedia device detection service

Synopsis:

    mm-detect [-d database_path] [-i schema_data_file] 
        [-s schema_file] [-p notify_path] [-b] [-n priority] [-v] 

Options:

-d database_path

Specify an overridden directory location for storing the media metadata

databases.

The default is /db/.

-i schema_data_file

Name the file (with an absolute path) that defines the initial data to store

in each media metadata database. This text file contains the SQL commands

to populate a database when it's created, which happens when the device

is inserted for the first time. Note that this option is processed only if the

-s option is set to use a schema creation file.

The default is /db/mmsync_data_car2.sql.

-s schema_file

Name the file (with an absolute path) containing the SQL commands that

create the initial schema of tables, indexes, and views of each media

metadata database. The schema file is used only to set up the database

when the device is inserted for the first time (i.e., the database didn't already

exist).

The default is /db/mmsync_car2.sql.

-p notify_path

Specify an overridden directory location for storing the PPS object used to

notify the car's HMI of synchronization status updates.

The default is /pps/services/mm-detect/.

-b

Copyright © 2014, QNX Software Systems Limited 21
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Run the mm-detect process in the foreground. This option is handy for

debugging, because it makes mm-detect log messages to standard error

in addition to sloginfo.

By default, mm-detect runs in the background.

-n priority

Set the priority of the mm-detect process. When your system is busy running

many applications, the priority level can have a considerable impact on the

time to see up-to-date media information after a device is inserted.

The valid range is 1 to 63; the default is 15.

-v

Increase output verbosity. Messages are written to sloginfo. The -v option

is cumulative, so you can add several v's to increase verbosity, up to four

levels.

Output verbosity is handy when you're trying to understand the operation of

mm-detect. However, when lots of -v arguments are used, the logging

becomes quite significant and can change timing noticeably. The verbosity

setting is good for systems under development but probably shouldn't be

used in production systems or during performance testing.

Description:

The mm-detect command starts the multimedia detection service, which continuously

monitors device attachments. Each time a device is attached, the service invokes

mm-sync to synchronize the device's media metadata with the appropriate QDB

database, and then publishes synchronization updates through PPS to the HMI.

Through command options, you can set new locations for storing the PPS

synchronization objects, media databases, or the files containing the schemas used

to create and initialize those databases. You can further control mm-detect by setting

the command-line options for the process priority and the debugging output level.

The mm-detect service runs as a self-contained process that doesn't require any user

input or accept any commands. It has no client utility for performing specific

device-monitoring tasks on request or for adjusting any of the previously mentioned

settings. To reconfigure mm-detect, you must change the options in its command

line. In CAR systems, this command line is contained in the SLM configuration file,

located at /etc/slm-config-all.xml.
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Chapter 3
Device tracking and media information management

The mm-detect service tracks which devices are attached to the QNX CAR system,

coordinates the extraction of media information from those devices, and publishes

that information for client applications to read.

These tasks are performed in an automated, ongoing procedure. Understanding this

procedure is essential if you wish to write a replacement utility for detecting and

synchronizing devices or to customize the configuration of mm-detect in your car

system.

The mm-detect process performs the following steps:

1. Command-line parsing

At startup, mm-detect parses its command-line options, which may define:

• the location of the PPS object used for sending synchronization status updates

to the car's HMI

• process metrics (e.g., priority level) and user and group IDs

• the paths of the SQL files defining the schemas and initial data for the

multimedia databases

• the directory for storing the multimedia databases

2. PPS setup

The mm-detect process creates one PPS object for storing synchronization status

updates from all devices. By default, this object's full path is

/pps/services/mm-detect/status. If the -p command option was provided

to mm-detect, a PPS object named status is created in the directory named by

this option's value.

The device listings directory, which stores the PPS objects that hold device

information, is a fixed location (/pps/qnx/mount/) that can't be changed through

command options. During startup, mm-detect begins monitoring this directory's

contents by issuing an open() call on the special .all object in this directory. By

opening the .all object, mm-detect receives notification of any changes to any

PPS objects in this directory. We refer to this special object as the PPS devices

information object (see PPS devices information object (p. 30) for further details).

The open() call is executed with the blocking flag set, meaning that the call doesn't

return until there's new data from PPS.

3. Device insertion handling
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When a media device is inserted into the car system, mm-detect reads the new

contents of the PPS devices information object to obtain the unique ID and

mountpoint of the newly inserted device. The former field is specified as the name

of the device's database to the QDB service, which loads that database. The latter

field is passed as an argument to a new thread that is created to synchronize the

device's media metadata with the device's database.

For the full details of the actions done by mm-detect in response to device

insertions, see Device insertion handling (p. 25).

After handling a device insertion, mm-detect issues another open() call to resume

monitoring the device listings directory.

4. Device removal handling

When a media device is removed from the car system, mm-detect notices the

device's information is deleted from the PPS devices information object. The

mm-detect service stops any active synchronization of the device's media contents,

sends notification of the device's removal to the car's HMI through PPS, and deletes

the device's database configuration file, forcing QDB to unload the database.

For the full details of the actions done by mm-detect in response to device

removals, see Device removal handling (p. 29).

After handling a device removal, mm-detect issues another open() call to resume

monitoring the device listings directory.

The mm-detect service runs continuously, so automated device monitoring and media

synchronization will continue until the car system is shut down.
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Device insertion handling

When mm-detect learns of a device insertion, it reads the device's information through

PPS and then spawns a thread for synchronizing the device's media metadata and

publishing synchronization status updates through PPS. These actions ensure that

client applications can read up-to-date device status and media metadata from the

databases and PPS.

The mm-detect process performs the following actions in response to a device

insertion:

1. PPS object parsing

When the user inserts a device, the appropriate device publisher detects the

insertion and then writes a PPS object to the device listings directory. The content

of this new PPS object is immediately added to the PPS devices information object

(the .all object) and is returned by the mm-detect call to open().

This new content includes:

• the unique ID of the device

• the device mountpoint

• the volume name

• the filesystem type

2. Mountpoint linking

For each newly inserted device, mm-detect creates a symbolic link whose target

is the device's mountpoint. The link source (i.e., the referring filesystem entry) is

given a path of: /apps/mediasources/db<UID>, where <UID> is the device's

unique ID. Creating these links offers client media applications the convenience

of accessing the filesystems of any attached device from a standard location.

3. Database loading

The unique ID field is used as the name of the database's configuration object,

which mm-detect writes to the PPS database configuration directory

(/pps/qnx/qdb/config/). When a PPS object is added to the configuration

directory, the QDB database server attempts to load the database with the same

name as the object; if necessary, QDB creates that database. For more details on

QDB's operation, see the QDB Developer's Guide.

After writing the database configuration object, mm-detect begins monitoring

changes in the PPS database status directory (/pps/qnx/qdb/status/). When

an object with the same name as the newly inserted device is created or updated,

mm-detect checks if that object's Status attribute is set to Valid. If so, it

proceeds to the next step. Otherwise, mm-detect resumes monitoring the status

directory to wait for the device's database to be loaded successfully.
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The mm-detect process keeps track of which device databases are loaded.

If an existing PPS object in the device listings directory is updated, for

example due to a changed mountpoint, mm-detect recognizes from the

extracted unique ID that the device's database is already loaded and so

avoids unnecessarily rewriting the device's database configuration object.

4. Media synchronization

Once the device's database is loaded, mm-detect spawns a new thread that

oversees the synchronization of the device's media metadata. This thread starts

synchronizing information on media files stored over the entire device and then

updates the PPS synchronization status object when specific phases of

synchronization complete. For details of all the actions done by mm-detect media

synchronization threads, see Media synchronization thread actions (p. 26).

Creating a dedicated thread for each synchronization ensures responsiveness,

because mm-detect can promptly react to other device insertions or removals

while still synchronizing a recently attached device.

Media synchronization thread actions

The media synchronization threads spawned by mm-detect handle all the interaction

with mm-sync necessary to synchronize a device's media metadata. These threads

also publish synchronization status updates through PPS, so client applications can

learn when the media information in device databases is up to date.

Learning the procedure followed by the media synchronization threads teaches you

how to invoke mm-sync from another program to ensure a device is properly

synchronized. This is essential if you choose to write your own version of mm-detect.

When creating a thread for synchronizing a device's media metadata, mm-detect

passes all the information it has on the newly attached device to the new thread. This

information includes the device's unique ID (UID), which is also the name of the

device's QDB database, and the device's mountpoint.

Each media synchronization thread performs the following actions:

1. Connecting to mm-sync

The thread connects to the multimedia synchronizer service (mm-sync) by calling

mm_sync_connect().

2. Registering for events

To register for mm-sync event notifications, the synchronization thread calls

mm_sync_events_register(), specifying the system event type (a pulse) and code

(the pulse type) to be delivered by the OS to indicate an mm-sync event has

occurred.

3. Starting media synchronization
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The thread calls mm_sync_start() to start synchronizing the device's media

metadata. The paths of the filesystem object representing the device's QDB database

(/dev/qdb/<UID>) and of the device's mountpoint are provided as parameters

in the mm_sync_start() call.

The API call parameters also specify the root directory ("/") as the synchronization

path and set the recursive option, instructing mm-sync to search all directories

on the device for media metadata. Also included as call parameters are the flags

to synchronize the file information and media creation and runtime information,

but not the flag for synchronizing playlist entry information.

4. Sending of first status update

Just after starting the synchronization, the mm-detect thread sends a status

update to the HMI through PPS. The device status is written to a special PPS object

(see PPS synchronization status object (p. 31)).

The status summary includes the synchronization completion flag, which is set to

"false" initially to show that the device is still being synchronized. A client

application within the HMI can read the status from the PPS object and learn that

a device has been inserted, but its media information has not yet been updated to

its database.

5. Sending of second status update

The mm-detect thread monitors system events as it waits for the synchronization

to complete. When the thread receives from the OS the type of pulse it registered

for in Step 2 (p. 26), the thread calls mm_sync_event_get() to read the mm-sync

data.

If the event data indicates that mm-sync has completed the file synchronization

pass, mm-detect sends another status update through PPS. This time, the

synchronization completion flag is set to "true" to show that the media file

information in the device's database is now up to date. A client application can

then display all the device's media information to users.

If the synchronization is aborted by mm-sync, the mm-detect thread

receives different event data that indicates a failed synchronization

operation. See the Unexpected synchronization termination (p. 28)

subsection for details.

6. Waiting for synchronization to complete

After sending the second status update, the synchronization thread continues to

monitor system events until it receives another pulse indicating that an mm-sync

event has occurred. When the event data indicates that all synchronization passes

have been completed, mm-detect updates the device's information to reflect the

successful synchronization, and then proceeds to its shutdown tasks.

7. Deregistering for events

Copyright © 2014, QNX Software Systems Limited 27

Device insertion handling



To stop mm-sync from sending further event notifications, mm-detect calls

mm_sync_events_register(), specifying NULL as the event type.

8. Disconnecting from mm-sync

The mm-detect thread closes its connection to the multimedia synchronizer

service by calling mm_sync_disconnect().

Unexpected synchronization termination

If the mm-sync synchronization operation fails unexpectedly, the mm-detect media

synchronization thread receives a pulse from the OS indicating that an mm-sync event

has occurred, and then calls mm_sync_event_get() to examine the event data. In this

case, the event data indicates an aborted synchronization, so mm-detect updates

its information for the device to show that the synchronization failed, and then begins

its shutdown activities.

If the user removes (detaches) a device while that device is still being synchronized,

mm-detect sends a special pulse to the active synchronization thread associated

with the newly removed device. This pulse contains a code that tells the synchronization

thread to terminate, which it does by proceeding to its shutdown tasks.
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Device removal handling

When mm-detect learns of a device removal, it stops any ongoing media

synchronization of the device, notifies the car's HMI of the device's removal, and

unloads the device's database. These actions ensure that media applications can

promptly inform users of a device's removal and that system resources are quickly

freed up for other tasks.

The mm-detect process performs the following actions in response to a device removal:

1. Media synchronization stopping

When the user removes (detaches) a device, the appropriate device publisher deletes

the corresponding PPS object from the device listings directory. The content of

this PPS object is immediately deleted from the PPS devices information object

(the .all object), which is constantly monitored by mm-detect. The mm-detect

call to open() then returns a string consisting of a minus sign (-), which indicates

an object removal, followed by the device name.

This last field is used by mm-detect to retrieve the device's information, which

includes a synchronization completion flag. If this flag is unset, mm-detect sends

a terminate signal to the active synchronization thread.

2. Mountpoint link removal

The mm-detect process deletes the symbolic link whose target is the newly

removed device's mountpoint. The full path of this symbolic link is:

/apps/mediasources/db<UID>, where <UID> is the device's unique ID.

Deleting this link removes the device's filesystem from the view of client

applications, which can no longer access the device.

3. Synchronization status updating

To notify the car's HMI applications of the device's removal, mm-detect writes a

string of the form -db<UID> to the PPS synchronization status object. Any

application monitoring this object for updates will quickly learn of the device's

removal and can update its HMI display to inform users.

4. Database unloading

The mm-detect process deletes the device's database configuration object from

the PPS database configuration directory (/pps/qnx/mount/config/). When

the QDB database server notices the deletion of this PPS object, the server unloads

the database with the same name as the object. This design supports better system

performance because databases are removed from memory as soon as their

corresponding devices are detached.
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PPS devices information object

The PPS devices information object (/pps/qnx/mount/.all) contains information

on all the devices currently attached to the car infotainment system.

Each attached device has its own PPS object, stored in the device listings directory.

The .all object in this same directory concatenates the contents of all other PPS

objects and therefore contains a separate section describing each device. Each of

these sections begins with a line in the form: [n]@<PPS_object_name>. The [n]

token means the information doesn't persist across reboots, so when the system shuts

down, the device's information isn't written to permanent storage by PPS.

Following the section identifier, the device parameters are specified, one per line, in

lines of the form: key::value. The device parameters store the hardware type, device

mountpoint, volume name, database storage path, and filesystem information.

The full contents of this PPS object look like this:

[n]@mme
device_type::hdd
fs_type::qnx
id::mme
mount::/accounts/1000/shared/
name::Juke Box
[n]@umass0
PPS_DRIVER_ID::/pps/qnx/driver/3678286
blocks_size::512
blocks_total::15240576
partition_count::1
raw::/dev/umass0
[n]@umass0.0
PPS_DRIVER_ID::/pps/qnx/driver/3678286
PPS_RAWMOUNT_ID::/pps/qnx/mount/umass0
blocks_size::512
blocks_total::15240574
fs_type::dos (fat32)
id::4f587192-d2fe-4efb-9fec-cd35531cfa45
label::UNTITLED
mount::/fs/usb0
name::UNTITLED
partition::/dev/umass0t11
partition_order::0
plugin_name::generic
raw::/dev/umass0
read_only::false

The mm-detect process looks for the at sign (@) to mark a new section and reads the

string immediately following that symbol as the name of the PPS object (and hence,

the name of the QDB database) representing the attached device.

When a device is removed, the delta mode reading of the .all object done by

mm-detect means that PPS sends mm-detect a string containing a minus sign (-)

followed by the PPS object (and QDB database) name. At this point, the device's PPS

object and the corresponding section in the .all object have been deleted.
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PPS synchronization status object

The PPS synchronization status object (by default,

/pps/services/mm-detect/status) contains the latest synchronization statuses

of all devices currently attached to the car infotainment system.

As the synchronization of newly attached devices progresses, the mm-detect service

updates this PPS object while client applications monitor it to learn when media

metadata has been synchronized.

The first line of this PPS object is of the form: [n]@status.

Following this first line, the synchronization statuses of individual devices are specified,

one per line, in JSON format. The fields in the synchronization statuses include but

aren't limited to:

• the device's unique ID (UID)

• the filesystem type (dos, qnx4, etc.)

• the media type (ipod, usb, etc.)

• the path of the storage file for the QDB database

• a synchronization completion flag, stored as a Boolean attribute named synched

The full contents of this PPS object look like this:

[n]@status
db4f587192d2fe4efb9feccd35531cfa45:json:{"dbpath":"/dev/qdb/4f587192
d2fe4efb9feccd35531cfa45","mount":"/fs/usb0","name":"UNTITLED","fs_t
ype":"dos (fat32)","device_type":"usb","image_path":"/apps/mediasour
ces/imagecache/db4f587192d2fe4efb9feccd35531cfa45","synched":true}
dbmme:json:{"dbpath":"/dev/qdb/mme","mount":"/accounts/1000/shared/"
,"name":"Juke Box","fs_type":"qnx","device_type":"hdd","image_path":
"/apps/mediasources/imagecache/dbmme","synched":true}

A client application can read the synched field to determine whether all media

information for a device is up to date, and then refresh the HMI display as appropriate.

For example, when synched is false, the application could show an entry for the new

device in a list of attached devices, but withhold the filesystem view of that device.

When synched is true, the application can display the information for all media files

on the device, because that device's database contents are known to be up to date.
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