
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

HMI Notification Manager

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: HNM Components ..9

Chapter 2: Event Processing ...11

Chapter 3: Configuration ...15

Chapter 4: Plugins ...19

The Generic plugin ...20

The HandsFreePhone plugin ..22

The VirtualMechanic plugin ...24

Chapter 5: PPS Objects ..29

Chapter 6: API Reference ...31

core.h ..32

Definitions in core.h ..32

Enumerations in core.h ..32

Functions in core.h ..33

display_event.h ..37

Definitions in display_event.h ...37

Typedefs in display_event.h ..37

Enumerations in display_event.h ...40

Functions in display_event.h ..41

event.h ..49

Definitions in event.h ...49

Typedefs in event.h ..50

Enumerations in event.h ..53

event-source.h ..56

Typedefs in event-source.h ...56

Functions in event-source.h ..59

messaging.h ...60

Definitions in messaging.h ...60

Typedefs in messaging.h ..61

Functions in messaging.h ...63

pps.h ...65

HMI Notification Manager

Definitions in pps.h ...65

Typedefs in pps.h ..66

Functions in pps.h ...67

queue.h ...73

Typedefs in queue.h ..73

Functions in queue.h ...75

status.h ...80

Definitions in status.h ..80

Typedefs in status.h ...81

Functions in status.h ...82

Table of Contents

About This Guide

This guide describes the HMI Notification Manager (HNM), a multimodal subsystem

for managing asynchronous, multimodal events based on predefined priorities. The

HNM appraises incoming events, applies appropriate rules, and then notifies all

subscribers via PPS.

This guide is intended for developers who will be creating and deploying apps for the

QNX CAR platform.

The following table may help you find information quickly:

Go to:To find out about:

HNM Components (p. 9)How the HNM is structured

HNM Components (p. 9)Command-line options for the HNM

service

Event Processing (p. 11)How events are handled

Configuration (p. 15)Specifying event priorities

Configuration (p. 15)The format for configuration files

Plugins (p. 19)Plugins for event sources

PPS Objects (p. 29)PPS objects used by the HNM

API Reference (p. 31)Functions, data types, structures, etc.

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
HNM Components

Overview

The HMI Notification Manager (HNM) is responsible for managing asynchronous,

multimodal events based on predefined priorities. Like a window manager, the HNM

decides when and how events get processed, based on their priority, and determines

whether or not to notify the user via the HMI. But unlike a window manager, the HNM

also responds to low-level system services using various input modalities and can

manage various outputs in addition to a video display (e.g., you could use the HNM

to manage audio streams).

Structure of the HNM

The HNM consists of three components:

hmi-notification-mgr

A daemon that implements the notification service.

hmi-notification-core.so

A core library that provides all the common functionality used by the HNM

and its associated event-source plugins (p. 19).

policy.cfg

A configuration (p. 15) file that specifies the event sources that the HNM

should deal with and how it should manage events.

Command-line options for the hmi-notification-mgr daemon

-c filename

Specify the policy configuration file (default location is

/etc/system/hmi-notification/policy.cfg). If no policy file is

found, the daemon will run without loading any event-source plugins.

-f

Run in the foreground, rather than in daemon mode (useful for debugging).

-p pps_base

Specify the base URI of the PPS objects managed by the HNM (default is

/pps/services/hmi-notification). Once the service is running, it

Copyright © 2014, QNX Software Systems Limited 9

creates Status and Messaging PPS objects (p. 29) that provide the

external interface to the service.

-v

Set the verbosity level of the log output.

10 Copyright © 2014, QNX Software Systems Limited

HNM Components

Chapter 2
Event Processing

Overview

Interaction events are the mechanism that the HNM uses to notify clients about

changes in the system. The HMI can subscribe to the HNM to receive these events,

which can then be dispatched to the appropriate applications.

Interaction events live through two stages:

• event generation—applications or services (including the HMI) create events for

the HNM to manage

• event processing—the HNM examines the priority of events to determine which

ones to act upon

The process works essentially as follows:

1. An application decides how a certain event should be handled. For example, if the

app wants an event to trigger a notice to appear on the display, it will set up a

display event for the HNM to handle.

2. The HNM maps the received event to its policy configuration to determine the

event's priority.

3. The HNM then decides whether to preempt other events, based on their priority,

and to activate the newly received event.

4. To notify subscribers of any changes to its state, the HNM updates the PPS Status

object (/pps/services/hmi-notification/Status).

Priorities

Applications can specify priorities in their policy configuration files by using integer

values in the range 0 (lowest) to 7 (highest). The format for the configuration file's

relevant section (called “event-priorities”) looks like this:

event-priorities {
 EventName = <priority_value>
 EventNameSpace {
 # This event's name will be prepended by the
 # 'EventNameSpace::' string, making it
 # distinct from the previous definition of
 # 'EventName'.
 EventName = <priority_value>
 }
}

Copyright © 2014, QNX Software Systems Limited 11

For example, here's an excerpt from the event-priorities section of the

configuration file for the VirtualMechanic plugin module:

event-priorities {
 Caution {
 fuelLevel = 2
 washerFluidLevel = 1
 transmissionFluidLevel = 2
 coolantLevel = 2
 brakeFluidLevel = 2
 tirePressure = 1
 tireWear = 1
 brakePadWear = 1
 brakeAbs = 1
 engineOilPressure = 2
 engineOilLevel = 2
 rpm = 0
 #temperature = 2
 #clutch_wear = 2
 lightHead = 2
 lightTail = 2
 }

For more information on configuration files, see “Configuration (p. 15)” in this guide.

If a priority configuration isn't specified for a particular event in the configuration file,

the HNM will assign a default value. The default priority will depend on the window

type (p. 17) that's requested. Here are the window types and their default priorities:

DescriptionDefault

priority

Window type

The notification takes up the whole window.0Fullscreen

A subtle, transient notification.0Growl

The notification isn't displayed.0Hidden

The Hidden window type is defined only for the sake of completeness—it

shouldn't be used in practice.

The notification remains on the screen (e.g., a status bar).0Notification

The notification appears in a popup overlay.0Overlay

Priority scenarios

The HNM must handle three distinct priority scenarios when an application asks for

an event to be processed:

1. The event has a lower priority than the currently active event.

2. The event has the same priority as the currently active event.

3. The event has a higher priority than the currently active event.

12 Copyright © 2014, QNX Software Systems Limited

Event Processing

These scenarios can be extended to accommodate the case where multiple

asynchronous events can arrive simultaneously. Although queues are the ideal data

structure to accommodate this workflow, not all interactions can be delayed. Therefore,

events are handled according to the following rules:

• If multiple events are received with varying priorities, the HNM will process each

event, queuing the events with lower priority and handling only the highest-priority

event.

• If multiple events are received with the same priority, the HNM will queue those

that can be queued and will process one of the remaining events, dropping the

rest.

Event types

Events are categorized into classes that correspond to the interaction types (e.g.,

display, audio). A class of interaction events can have subtypes. For example, the

display class has these subtypes:

display-start

An app creates this event to ask the HMI to display a window. If the event's

priority value is greater than that of all active events, then the HNM will

service the event. Otherwise, a fallback window type will be requested,

causing the appraisal to repeat until no more fallback types are left to try.

For example:

event->window_type = HNM_WINDOW_NOTIFICATION ;
event->fallback_types[0] = HNM_WINDOW_GROWL ;
event->fallback_types[1] = HNM_WINDOW_HIDDEN ;
event->fallback_types[2] = HNM_WINDOW_HIDDEN ;
event->fallback_types[3] = HNM_WINDOW_HIDDEN ;

display-end

An app creates this event to ask the HMI to hide a window.

Sharing the display

Some apps may be willing to share the display with others. Although the HNM doesn't

mandate how the display is physically shared, it must be aware of which applications

can share the display (and under which circumstances) so it can decide whether to

allow an app to display itself.

Apps can specify whether windows can share the display by setting one of the following

display-control flags:

HNM_DISPLAY_SHARED

Copyright © 2014, QNX Software Systems Limited 13

Indicates that the window type can share the display regardless of what is

currently being displayed.

HNM_DISPLAY_EXCLUSIVE

Indicates that the window type can't share the display with any other

exclusive window type.

HNM_DISPLAY_SEMI_EXCLUSIVE

Indicates that the window type can be shared with a predefined number of

semi-exclusive windows, which depends on the number of available display

slots (defined in the policy configuration).

These controls are specified in the window-types section of the policy.cfg file.

For details, see “Window types (p. 17)” in the “Configuration” chapter.

14 Copyright © 2014, QNX Software Systems Limited

Event Processing

Chapter 3
Configuration

Overview

The HNM relies on a policy configuration file to determine which event sources to

manage and how to manage them, based on their priorities. The default configuration

file is located here:

/etc/system/hmi-notification/policy.cfg

Configuration file format

The format is a simple text file that defines a hierarchy (tree) of different sections.

Each line of the configuration file can hold at most 1024 characters (additional

characters will be truncated from the line when the file is processed). Configuration

items are listed within these sections as name-value pairs separated by an equals sign

(=).

Each name of a section or subsection is followed by an open brace ({). Names

themselves can contain any characters except { and space. A closing brace (}) ends

each section or subsection. Any text between a number sign (#) and the end of the

line is a comment.

Here's the default policy.cfg file:

hpm-cfg {
 modules {
 Generic {
 dll = /lib/dll/hmi-notification/event-source-generic.so
 }
 HandsFreePhone {
 dll = /lib/dll/hmi-notification/event-source-handsfree.so
 event-priorities {
 HFP_INITIALIZED = 0
 HFP_CONNECTED_IDLE = 0
 HFP_CALL_OUTGOING_DIALING = 1
 HFP_CALL_INCOMING = 1
 }
 }
 VirtualMechanic {
 dll = /lib/dll/hmi-notification/event-source-vm.so
 event-priorities {
 Caution {
 fuelLevel = 2
 washerFluidLevel = 1
 transmissionFluidLevel = 2
 coolantLevel = 2
 brakeFluidLevel = 2
 tirePressure = 1
 tireWear = 1
 brakePadWear = 1
 brakeAbs = 1

Copyright © 2014, QNX Software Systems Limited 15

 engineOilPressure = 2
 engineOilLevel = 2
 rpm = 0
 #temperature = 2
 #clutch_wear = 2
 lightHead = 2
 lightTail = 2
 }
 Alert {
 fuelLevel = 3
 washerFluidLevel = 1
 transmissionFluidLevel = 3
 coolantLevel = 3
 brakeFluidLevel = 3
 tirePressure = 2
 tireWear = 2
 brakePadWear = 2
 brakeAbs = 2
 engineOilPressure = 3
 engineOilLevel = 3
 rpm = 0
 #temperature = 3
 #clutch_wear = 3
 lightHead = 3
 lightTail = 3
 }
 }
 }
 }

 window-types {
 Fullscreen {
 DisplayControl = 0 # Exclusive
 DefaultPriority = 0
 }
 Overlay {
 DisplayControl = 0 # Exclusive
 DefaultPriority = 0
 }
 Notification {
 DisplayControl = 1 # Semi-Exclusive with 1 display slots.
 DefaultPriority = 0
 }
 Growl {
 DisplayControl = -1 # Shared
 DefaultPriority = 0
 }
 }
}

Sections

Although you can set up your own sections, the HNM relies on the following predefined

sections in the configuration file:

modules

Informs the HNM about any pluggable event-source modules that need to

be loaded by the system. The dll child item specifies the path of the shared

object (.so file) for the event-source plugin. For more information about

event-source plugins, see “Plugins (p. 19)” in this guide.

16 Copyright © 2014, QNX Software Systems Limited

Configuration

window-types

Specifies how notices should appear on the display.

Modules

The modules section contains the names of the event-source plugins to be loaded

(e.g., VirtualMechanic). Each plugin can contain these subsections:

dll

Path to the .so file (e.g., dll = /lib/dll/hmi-notifica

tion/event-source-vm.so).

event-priorities

Priority mappings specified via a list of name-value pairs (e.g., fuelLevel

= 2).

The HNM uses the names in the event-priorities section to form the

event names that appear, for example, in the

/pps/services/hmi-notification/Status object:

@Status
display:json:[{"name":"Home","type":"Modal"},
{"name":"Alert","type":"Notification"}]

Window types

The window-types section lists the available window types, along with their Dis

playControl and DefaultPriority values. The window types are as follows:

• Fullscreen—an application's fullscreen view associated with an event. Although

other window types may require exclusive access to the display, fullscreen windows

are unique in that they can't be closed. They can be replaced only by another

fullscreen view.

• Growl—transient notification types. These have nonexclusive display semantics,

so any number of growl notifications can be displayed alongside exclusive or

semi-exclusive window types.

• Notification—these represent nontransient graphical hints (e.g., graphical

status bar). Notifications have semi-exclusive display semantics, so they can

typically share the display with other exclusive window types (e.g., fullscreen or

overlay windows). But note that there may be a limit to the number of nontransient

notifications that can be displayed at any given time.

• Overlay—can have exclusive or nonexclusive access to the display. Exclusive

overlays are essentially like fullscreen windows except that overlay windows can

Copyright © 2014, QNX Software Systems Limited 17

be closed. When an overlay is closed, the views that were previously obscured

should be redisplayed.

DisplayControl values

For each window type, the DisplayControl item specifies how the window will

share the display:

DescriptionFlagValue

Window type can't share the display with any other exclusive window

type.

HNM_DISPLAY_EXCLUSIVE0

The value 1 indicates the number of display slots. In this case, the

window type can share the display with an exclusive display and with

one or more semi-exclusive displays.

HNM_DISPLAY_SEMI_EXCLUSIVE1

Window type can share the display regardless of what is currently

being displayed.

HNM_DISPLAY_SHARED-1

18 Copyright © 2014, QNX Software Systems Limited

Configuration

Chapter 4
Plugins

Overview

Display events can originate from many different source types. Since the HNM may

not know the form of those sources in advance, it exposes a plugin framework to allow

new event sources to be added.

Plugins are DLLs (shared objects) that must register with the HNM subsystem via the

hnm_register_module() (p. 59) function. Plugins are loaded via the policy.cfg file

(see “Configuration (p. 15)” for details.)

You'll find the following plugins on your system under the

/lib/dll/hmi-notification/ directory:

DescriptionFilenamePlugin

Provides a generic PPS interface that allows applications to

use the HNM policy-management facilities without

event-source-generic.soGeneric

implementing a custom plugin. This plugin can also be used

for automated testing.

Generates display events to notify subscribing HMI applications

so they can handle incoming handsfree phone calls.

event-source-handsfree.soHandsFreePhone

Notifies the HNM of caution and alert conditions for relevant

vehicle systems.

event-source-vm.soVirtualMechanic

The following sections in this chapter cover each of these plugins.

Copyright © 2014, QNX Software Systems Limited 19

The Generic plugin

Overview

The Generic event-source plugin relies on a PPS server object

(/pps/services/hmi-notification/control) that clients can use to issue

asynchronous events to the HNM. Clients send an event command with the appropriate

parameters and values, while the HNM responds via the

/pps/services/hmi-notification/Status and

/pps/services/hmi-notification/Messaging objects. For details on those

objects, see their entries in the PPS Objects Reference.

Callback functions

The Generic plugin uses these callback functions:

open()

The plugin subscribes to the

/pps/services/hmi-notification/control PPS object, listening

for clients to publish events. The plugin creates this PPS object when the

open() function is called.

close()

The counterpart to the open() callback, this callback is responsible for closing

its connection to the control object.

read_event()

This function is responsible for decoding changes made to the control

object and for constructing events that will be passed to the HNM policy

subsystem.

For more information, see “API Reference (p. 31)” in this guide.

Loading the plugin

To load the Generic plugin, make sure the following lines are in the modules section

of the HNM policy configuration file (policy.cfg):

Generic {
 dll = /lib/dll/hmi-notification/event-source-generic.so
 }

Note that the Generic plugin doesn't have an associated event-priority map. Event

names for the plugin are specified at run time only through PPS event messages.

20 Copyright © 2014, QNX Software Systems Limited

Plugins

Reporting errors

The Generic plugin will write messages to the system log periodically. The verbosity

is configurable, but the level currently can be set only at compile time. To do this, set

the SLOG_VERBOSITY preprocessor symbol to a positive number when compiling;

the greater this value, the more information will be written to the system log. The

default verbosity level is _SLOG_ERROR (i.e., print only critical and error messages).

You can configure the plugin to print log messages to the standard output stream. To

do this, define the LOG_TO_STDOUT preprocessor symbol at compile time. You can

also have the plugin generate additional debugging information (e.g., source file,

function name, line number) by defining the DEBUG flag at compile time.

Copyright © 2014, QNX Software Systems Limited 21

The Generic plugin

The HandsFreePhone plugin

Overview

The HandsFreePhone event-source plugin represents the Bluetooth HFP phone service.

This plugin is responsible for notifying the HNM of incoming phone call events. The

plugin generates display events so that subscribing HMI applications will know how

to handle incoming handsfree phone calls.

This plugin subscribes to the /pps/services/bluetooth/handsfree/status

object, which the Bluetooth Manager uses to publish the results of commands sent

to the /pps/services/bluetooth/handsfree/control object. For details on

these objects, see their entries in the PPS Objects Reference.

HFP states

The plugin generates display events in response to state changes in the Bluetooth HFP

service. When the plugin detects a state change in the HFP status object, one or

more events will be generated to open and close display windows appropriately. New

events are added to the tail of the queue following HFP state changes.

Although the HFP status object can report several state values (HFP_CALL_ACTIVE,

HFP_CALL_ACTIVE_HELD, etc.), the HandsFreePhone plugin considers only a small

set of HFP states:

Plugin behaviorHFP state

When the HFP system is first initialized, there should be no active call. When

the HFP status object gets to this state, a display-end event is issued to

ensure that no displays associated with handsfree calls are currently displayed.

HFP_INITIALIZED

Note that the initialized state occurs when a call ends as well as when the system

is first initialized. No priority is explicitly assigned to the initialized state—this

state issues only display-end requests, which do not depend on priority.

The HFP service is connected and ready for call activity.HFP_CONNECTED_IDLE

A remote party's number is being dialed.HFP_CALL_OUTGOING_DIALING

When an incoming call is received, the plugin will issue a display-start

event requesting an Overlay window type. The name of the event is simply the

HFP_CALL_INCOMING

state's name (i.e., HFP_CALL_INCOMING). The HMI view responsible for

handling the specific display request is the Communication app.

If the incoming call can't be displayed by a popup overlay, then the fallback

display type is a growl notification. This growl will require that the user activate

22 Copyright © 2014, QNX Software Systems Limited

Plugins

Plugin behaviorHFP state

the Communication app (e.g., by tapping the growl notification window) to accept

or reject the incoming call.

Whether a communication dialog can be displayed depends on the priority of

the currently display application and on the priority of the incoming call event.

An incoming call event has default priority unless a custom priority is specified

in the policy configuration. You can set a custom priority by adding the line

HFP_CALL_INCOMING = 0 to the HandsFreePhone module definition in the

policy configuration file as shown:

modules {
 ...
 HandsFreePhone {
 dll = /lib/dll/hpm/event-source-handsfree.so
 event-priorities {
 ...
 HFP_CALL_INCOMING = 0 # Set custom priority
 ...
 }
 }
 ...
}

Callback functions

Since the HandsFreePhone plugin wraps the Bluetooth HFP service's PPS status

object, the open() callback must subscribe to this PPS object so that the plugin will

be notified of any state changes by the HFP subsystem.

The close() callback closes the PPS object that this plugin subscribes to.

The read_event callback is the mechanism that the HNM uses to get event information

from this plugin. If there's a pending event from the Bluetooth HFP service, this

callback will return the event data in the specified event buffer.

For more information, see “API Reference (p. 31)” in this guide.

Loading the plugin

The following lines in the modules section of the HNM policy configuration file

(policy.cfg) will load the HandsFreePhone plugin. You can adjust the HFP state

priorities as mentioned above:

HandsFreePhone {
 dll = /lib/dll/hmi-notification/event-source-handsfree.so
 event-priorities {
 HFP_INITIALIZED = 0
 HFP_CONNECTED_IDLE = 0
 HFP_CALL_OUTGOING_DIALING = 1
 HFP_CALL_INCOMING = 1
 }

Copyright © 2014, QNX Software Systems Limited 23

The HandsFreePhone plugin

The VirtualMechanic plugin

Overview

The VirtualMechanic (VM) event-source plugin represents the low-level service that

reports vehicle status to the system. The VM plugin will notify the HNM subsystem of

caution and alert status conditions for relevant components in these categories:

• Fluid

• Traction

• Braking

• Powertrain

• Electrical

The Virtual Mechanic app allows the user to view the status of these components in

the platform's HMI:

The VM plugin subscribes to the /pps/qnxcar/sensors/status object, which

the Virtual Mechanic app uses to report status values for all of its components.

Event types

The VM plugin generates two event types:

• Caution

• Alert

The caution status condition initially has the default priority, whereas the alert status

condition has a priority that is one greater than the default. Note that the plugin

monitors several categories of data, so each of these can potentially have different

caution and alert priorities.

24 Copyright © 2014, QNX Software Systems Limited

Plugins

Here's the VM event-priorities section from the default policy.cfg file:

event-priorities {
 Caution {
 fuelLevel = 2
 washerFluidLevel = 1
 transmissionFluidLevel = 2
 coolantLevel = 2
 brakeFluidLevel = 2
 tirePressure = 1
 tireWear = 1
 brakePadWear = 1
 brakeAbs = 1
 engineOilPressure = 2
 engineOilLevel = 2
 rpm = 0
 #temperature = 2
 #clutch_wear = 2
 lightHead = 2
 lightTail = 2
 }
 Alert {
 fuelLevel = 3
 washerFluidLevel = 1
 transmissionFluidLevel = 3
 coolantLevel = 3
 brakeFluidLevel = 3
 tirePressure = 2
 tireWear = 2
 brakePadWear = 2
 brakeAbs = 2
 engineOilPressure = 3
 engineOilLevel = 3
 rpm = 0
 #temperature = 3
 #clutch_wear = 3
 lightHead = 3
 lightTail = 3
 }
 }

The nested event names correspond to the names of the attributes published in the

/pps/qnxcar/sensors/status object.

The following table shows the caution and alert status conditions for each of the

attributes. Note that for the ABS system, only the individual wheel sensors can trigger

caution status conditions. For attributes with Boolean data types, a false value will

trigger a caution status condition.

Alert status conditionCaution status conditionAttribute

n/an/abrakeAbsEnabled

n/afalsebrakeAbsFrontLeft

n/afalsebrakeAbsFrontRight

n/afalsebrakeAbsRearLeft

n/afalsebrakeAbsRearRight

Copyright © 2014, QNX Software Systems Limited 25

The VirtualMechanic plugin

Alert status conditionCaution status conditionAttribute

<=70%<=80%brakeFluidLevel

<=20%<=40%brakePadWearFrontLeft

<=20%<=40%brakePadWearFrontRight

<=20%<=40%brakePadWearRearLeft

<=20%<=40%brakePadWearRearRight

n/an/acameraRearviewActive

<=70%<=80%coolantLevel

<=75%<=85%engineOilLevel

<=75%<=85%engineOilPressure

<=10%<=25%fuelLevel

n/afalselightHeadLeft

n/afalselightHeadRight

n/afalselightTailLeft

n/afalselightTailRight

>=7000>=6250rpm

n/an/aspeed

<=24 PSI, >=38 PSI<=26 PSI, >=36 PSItirePressureFrontLeft

<=24 PSI, >=38 PSI<=26 PSI, >=36 PSItirePressureFrontRight

<=24 PSI, >=38 PSI<=26 PSI, >=36 PSItirePressureRearLeft

<=24 PSI, >=38 PSI<=26 PSI, >=36 PSItirePressureRearRight

<=20%<=30%tireWearFrontLeft

<=20%<=30%tireWearFrontRight

<=20%<=30%tireWearRearLeft

<=20%<=30%tireWearRearRight

<=40%<=60%transmissionClutchWear

<=70%<=80%transmissionFluidLevel

>=240 (degrees F)>=215 (degrees F)transmissionFluidTemperature

n/an/atransmissionGear

<=10%<=20%washerFluidLevel

26 Copyright © 2014, QNX Software Systems Limited

Plugins

Callback functions

Since the VM plugin wraps the /pps/qnxcar/sensors/status object, the open()

callback must subscribe to this PPS object so that the plugin will be notified of any

changes published by the Virtual Mechanic app.

The close() callback closes the PPS object that the VM plugin subscribes to.

The read_event callback will return the event data from the VM plugin. This function

will interpret any changes to the PPS data from the /pps/qnxcar/sensors/status

object and will construct the appropriate event structure, returning this to the caller.

If no data is available from PPS, this function returns false.

For more information, see “API Reference (p. 31)” in this guide.

Loading the plugin

The modules section of the HNM policy configuration file (policy.cfg) contains

a subsection for the VM plugin, giving the location of the .so file to load:

VirtualMechanic {
 dll = /lib/dll/hmi-notification/event-source-vm.so

Copyright © 2014, QNX Software Systems Limited 27

The VirtualMechanic plugin

Chapter 5
PPS Objects

Overview

The HNM uses these PPS objects for communicating with subscribed clients:

/pps/services/hmi-notification/Messaging

Server object that is used to send transient notifications.

/pps/services/hmi-notification/Status

Contains the status of the various output modalities.

/pps/services/hmi-notification/control

Control object for the generic event-source plugin.

For more information, see the PPS Objects Reference.

Copyright © 2014, QNX Software Systems Limited 29

Chapter 6
API Reference

Summary

The following table summarizes the header files that provide the HNM API:

DescriptionHeader file

Provides an interface to the host system's

logging facilities.

core.h

The types, structures, and functions that

comprise the display event type.

display_event.h

Declaration of the HNM event structure

and its associated functions.

event.h

Structures and the register function for

event-source plugins.

event-source.h

Declaration of the Messaging PPS object

used by the HNM.

messaging.h

Declaration of a generic PPS object

structure.

pps.h

Declaration of a generic queue data

structure.

queue.h

Declaration of the Status PPS object

used by the HNM.

status.h

Copyright © 2014, QNX Software Systems Limited 31

core.h

HNM core library declarations.

The core HNM library provides an interface to the host system's logging facilities.

Definitions in core.h

Preprocessor macro definitions for the core.h header file in the libhnm library.

Definitions:

#define hnm_dbg hnm_log(_SLOG_DEBUG1, fmt, ##__VA_ARGS__)

This macro implements a log function for debug information.

#define hnm_err hnm_log(_SLOG_ERROR, fmt, ##__VA_ARGS__)

This macro implements a log function for errors.

#define hnm_info hnm_log(_SLOG_INFO, fmt, ##__VA_ARGS__)

This macro implements a log function for general information.

#define DEFAULT_VERBOSITY _SLOG_ERROR

This literal specifies the default verbosity level used by the log function.

Library:

libhnm

Enumerations in core.h

hnm_LogBufferId

Alias for the log buffer ID type enumeration

Synopsis:

#include <hnm/core.h>

typedef enum hnm_log_buffer_id hnm_LogBufferId;

Library:

libhnm

Description:

This type is an alias for the log buffer ID type enumeration, hnm_log_buffer_id (p.

33).

32 Copyright © 2014, QNX Software Systems Limited

API Reference

hnm_log_buffer_id

Enumeration of log buffer IDs.

Synopsis:

#include <hnm/core.h>

typedef enum hnm_log_buffer_id{
 HNM_LOG_SLOG == 0
 HNM_LOG_STDOUT
} hnm_LogBufferId;

Data:

HNM_LOG_SLOG

Sets the system log as the target buffer.

HNM_LOG_STDOUT

Sets the standard output stream as the target buffer.

Library:

libhnm

Description:

The HNM_LOG_SLOG and HNM_LOG_STDOUT flags specify the target buffer for logging.

Functions in core.h

hnm_log()

Private helper function used to generate log messages.

Synopsis:

#include <hnm/core.h>

void hnm_log(int severity, const char *fmt,...)

Arguments:

severity

Copyright © 2014, QNX Software Systems Limited 33

core.h

The severity of the condition that triggered the message. For more information

on severity levels, see slogf() in the QNX C Library Reference. Valid values

include:

• _SLOG_INFO

• _SLOG_WARN

• _SLOG_ERROR

• _SLOG_CRITICAL

fmt

The format string to print to the log buffer. This may include tokens that to

be replaced by values of variable arguments appended to the end of the call.

The max length of an expanded log message is 1024 characters (this includes

all format substitutions and the null terminator).

Library:

libhnm

Description:

NOTE: The hnm_log() function is flagged "private" because using it directly is

discouraged. Instead, use the macros that follow its declaration, which add debugging

data when the DEBUG macro is defined. However, you may need to log at different

verbosity levels for which macros haven't yet been defined, so this function may be

useful in such cases.

The hnm_log() function sends debugging information with an associated severity to

the appropriate log. The log where the data is actually sent is specified by the global

variable log_stdout. If this variable is nonzero, output generated by this function

is printed to the system log.

Log messages are written to the log buffer only if their severity is less than or equal

to the current verbosity setting.

NOTE: If the severity of the log message is critical, the program is aborted. If the

severity of the log message is _SLOG_ERROR, the program exits with a failure status.

Returns:

Nothing.

34 Copyright © 2014, QNX Software Systems Limited

API Reference

hnm_set_log_buffer()

Specify the log buffer for the hnm_log() function to use.

Synopsis:

#include <hnm/core.h>

void hnm_set_log_buffer(hnm_LogBufferId log_buffer)

Arguments:

log_buffer

The ID representing the log buffer that hnm_log() uses for output.

Library:

libhnm

Description:

The hnm_set_log_buffer() function sets the internal flag that specifies the target

logging buffer for the log data emitted by hnm_log().

Returns:

Nothing.

hnm_setLogVerbosity()

Set the verbosity level.

Synopsis:

#include <hnm/core.h>

void hnm_setLogVerbosity(unsigned verbosity)

Arguments:

verbosity

The verbosity level.

Library:

libhnm

Copyright © 2014, QNX Software Systems Limited 35

core.h

Description:

The hnm_setLogVerbosity() function sets the verbosity level for log output generated

by the HNM.

Returns:

Nothing.

36 Copyright © 2014, QNX Software Systems Limited

API Reference

display_event.h

Definition of the types, structures, and functions that comprise the display event type.

Definitions in display_event.h

Preprocessor macro definitions for the display_event.h header file in the libhnm library.

Definitions:

#define hnm_DisplayEvent_narrow (hnm_Event_typeof(event, HNM_EVENT_DISPLAY
) ? \
 (hnm_DisplayEvent*)event : \
 NULL)

Macro that lowers an hnm_Event instance to an hnm_DisplayEvent.

Library:

libhnm

Typedefs in display_event.h

hnm_DisplayEvent

Alias for hnm_display_event.

Synopsis:

#include <hnm/display_event.h>

typedef struct hnm_display_event hnm_DisplayEvent;

Library:

libhnm

Description:

This is an alias for the hnm_display_event structure.

hnm_display_event

Structure encapsulating display event specific data.

Synopsis:

struct hnm_display_event hnm_DisplayEvent {
 EVENT_BASE ;
 hnm_WindowTypeID window_type ;
 hnm_WindowTypeID fallback_types [HNM_WINDOW_HIDDEN];
 char view [256];
};

Copyright © 2014, QNX Software Systems Limited 37

display_event.h

Data:

EVENT_BASE

Extend the base Event structure.

hnm_WindowTypeID window_type

An identifier of the requested window type. This is the preferred window

type requested by an application. An alternate window type may be specified

by the HNM if the event has a lower priority than the currently displayed

application. This allows the information to be presented on the display

without needing to change which application controls the display.

hnm_WindowTypeID fallback_types[HNM_WINDOW_HIDDEN]

An array of supported window types that can be used as a fallback in case

the requested window type cannot be used for displaying application

information. This list must be ordered by preference from most to least

preferred.

char view[256]

A string describing the name of the view that is associated with the

interaction request. This is used to identify the name of the application

responsible for fulfilling the display request and to inform the application

of the relevant subview.

Library:

libhnm

Description:

The hnm_DisplayEvent type is a specialization of an hnm_Event, so it can be

passed around as a pointer to an hnm_Event, which can be narrowed to an

hnm_DisplayEvent (p. 37).

38 Copyright © 2014, QNX Software Systems Limited

API Reference

hnm_window_type

Structure representing a window type.

Synopsis:

typedef struct hnm_window_type {
 const char * name ;
 unsigned int default_priority ;
 hnm_DisplayControl exclusive ;
 unsigned short max_display_slots ;
 unsigned short num_display_slots ;
 hnm_DisplayEvent ** display_slots ;
}hnm_WindowType;

Data:

const char * name

A pointer to a string literal that expresses the window type as a string. This

structure member is immutable; it should be set only at initialization.

unsigned int default_priority

The default priority used for events of the associated window type.

hnm_DisplayControl exclusive

A flag indicating whether the window type requires exclusive access to the

display. This is a tri-state value that is evaluated in the decision tree used

to determine if a display request can be accepted. A window type may require

exclusive, semi-exclusive, or shared access to the display.

unsigned short max_display_slots

The maximum number of display slots available for the current window type.

If this type isn't semi-exclusive, this value should be zero.

unsigned short num_display_slots

The number of available display slots for the current window type. If the

window type isn't semi-exclusive, the value of this member should be zero.

hnm_DisplayEvent ** display_slots

Copyright © 2014, QNX Software Systems Limited 39

display_event.h

An array of display slots. Each slot is a pointer to an active event. Available

display slots contain NULL pointers.

Library:

libhnm

Description:

This structure is used to group window type configuration data including name strings

as well as exclusivity.

Enumerations in display_event.h

hnm_WindowTypeID

Alias for the window display type enumeration

Synopsis:

#include <hnm/display_event.h>

typedef enum hnm_window_type_e hnm_WindowTypeID;

Library:

libhnm

Description:

This type is an alias for the window display type enumeration, hnm_window_type_e

(p. 40).

hnm_window_type_e

Enumeration of window display types.

Synopsis:

#include <hnm/display_event.h>

typedef enum hnm_window_type_e{
 HNM_WINDOW_FULLSCREEN
 HNM_WINDOW_OVERLAY
 HNM_WINDOW_NOTIFICATION
 HNM_WINDOW_GROWL
 HNM_WINDOW_HIDDEN
 HNM_WINDOW_NUM_TYPES
} hnm_WindowTypeID;

Data:

40 Copyright © 2014, QNX Software Systems Limited

API Reference

HNM_WINDOW_FULLSCREEN

Full screen window.

HNM_WINDOW_OVERLAY

Popup overlay.

HNM_WINDOW_NOTIFICATION

Persistent notification.

HNM_WINDOW_GROWL

Transient notification.

HNM_WINDOW_HIDDEN

Do not display.

HNM_WINDOW_NUM_TYPES

Library:

libhnm

Description:

The available window types are Fullscreen, Growl, Notification, and Overlay. Note that

the Hidden window type is defined only for the sake of completeness; it shouldn't be

used in practice.

Functions in display_event.h

display_event_factory_get_next_event()

Get the next event.

Synopsis:

#include <hnm/display_event.h>

Copyright © 2014, QNX Software Systems Limited 41

display_event.h

hnm_DisplayEvent* display_event_factory_get_next_event()

Arguments:

Library:

libhnm

Description:

This function returns the next-highest priority display event to pass to the HNM.

Returns:

The next-highest priority event from the internal queues. Returns NULL if there are

no queued events.

display_event_window_type_id()

Get the window type ID that corresponds to the specified string.

Synopsis:

#include <hnm/display_event.h>

hnm_WindowTypeID display_event_window_type_id(const char *type_string)

Arguments:

type_string

The JSON string used to represent the window type.

Library:

libhnm

Description:

This function has worst-case complexity of O(m*n) where m is the average length of

the window type string and n is the number of window types defined.

Returns:

An hnm_WindowTypeID that corresponds to the specified window type string. If no

corresponding window type is found, HNM_WINDOW_HIDDEN is returned.

42 Copyright © 2014, QNX Software Systems Limited

API Reference

display_event_window_type_name()

Get the window type name that corresponds to the specified ID.

Synopsis:

#include <hnm/display_event.h>

const char* display_event_window_type_name(hnm_WindowTypeID type_id)

Arguments:

type_id

The WindowTypeID whose literal string representation is being sought.

Library:

libhnm

Description:

This function obtains the string literal that corresponds to the specified WindowTypeID

in constant O(1) time.

Returns:

The string literal the corresponds with the specified type ID.

hnm_display_event_appraise()

Appraise a display interaction request to determine if it should be serviced.

Synopsis:

#include <hnm/display_event.h>

bool hnm_display_event_appraise(hnm_Event *event, void *hnm_data)

Arguments:

event

The interaction event structure that encapsulates the display event.

hnm_data

Copyright © 2014, QNX Software Systems Limited 43

display_event.h

The HNM data structure that provides access to the active event list and to

the HNM policy configuration.

Library:

libhnm

Description:

This function analyzes the specified event to determine whether:

• the request corresponds to a display event

OR:

• given the current status of the HNM, the request should be serviced as is or using

a fallback window type.

Returns:

A flag indicating whether the current display interaction request should be accepted

(true) or rejected (false). If the event is not a display event, it will be rejected

(false).

hnm_DisplayEvent_create()

Create a new DisplayEvent instance.

Synopsis:

#include <hnm/display_event.h>

hnm_DisplayEvent* hnm_DisplayEvent_create()

Arguments:

Library:

libhnm

Description:

This function allocates a new hnm_DisplayEvent structure and initializes all its members

to zero with the exception of the appraise and service callbacks, which will have the

correct functions assigned to them.

Returns:

A pointer to a new hnm_DisplayEvent structure. The memory returned by this

function is transferred to the calling context responsible for deleting it.

44 Copyright © 2014, QNX Software Systems Limited

API Reference

hnm_DisplayEventFactory_findEvent()

Search for a named event.

Synopsis:

#include <hnm/display_event.h>

hnm_DisplayEvent* hnm_DisplayEventFactory_findEvent(const char *event_name)

Arguments:

event_name

Name of the event.

Library:

libhnm

Description:

This function searches for the event specified. If multiple events have the same name,

the first one encountered with the highest priority is returned.

Returns:

A queued event with the specified event name. Returns NULL if none are found.

hnm_DisplayEventFactory_getDefaultEvent()

Obtain a pointer to the default event instance.

Synopsis:

#include <hnm/display_event.h>

hnm_DisplayEvent* hnm_DisplayEventFactory_getDefaultEvent()

Arguments:

Library:

libhnm

Description:

This function returns the default event, which is used when no other event is specified.

Copyright © 2014, QNX Software Systems Limited 45

display_event.h

Returns:

The default event.

hnm_DisplayEventFactory_init()

Initialize the display event "factory".

Synopsis:

#include <hnm/display_event.h>

void hnm_DisplayEventFactory_init(struct hnm_config_node *config_tree)

Arguments:

config_tree

Configuration tree used to initialize the state of the internal factory.

Library:

libhnm

Description:

Display events are generated by a "factory" responsible for allocating and initializing

new DisplayEvent instances. Although the internal state of the factory isn't visible

to other compilation units, a factory API is defined to expose the factory itself as a

black box.

Before the factory can be used, it must be initialized via the

hnm_DisplayEventFactory_init() function.

NOTE: If the factory isn't initialized before it's used, the default policy for window

types will be followed.

Returns:

Nothing.

hnm_DisplayEventFactory_InitWindowTypes()

Initialize the window types.

Synopsis:

#include <hnm/display_event.h>

void hnm_DisplayEventFactory_InitWindowTypes(struct hnm_config_node
*config_tree)

46 Copyright © 2014, QNX Software Systems Limited

API Reference

Arguments:

config_tree

Configuration tree searched for the window type semantic information.

Library:

libhnm

Description:

This function initializes the window type semantics from the policy configuration.

Given a configuration tree, this function finds the window-types section in the tree

and then extracts the window type semantic information. The semantics are expressed

by the internal HNM state machine. If the configuration tree doesn't contain a window-

types section, then a default policy is used.

Returns:

Nothing.

hnm_display_event_service()

Service a display interaction request.

Synopsis:

#include <hnm/display_event.h>

void hnm_display_event_service(hnm_Event *event, void *hnm_data)

Arguments:

event

The interaction event structure that encapsulates the display event.

hnm_data

The HNM data structure that provides access to the active event list and to

the HNM policy configuration.

Library:

libhnm

Copyright © 2014, QNX Software Systems Limited 47

display_event.h

Description:

This function does the specialized processing required to service the specified display

interaction event. The nature of the processing required may vary depending on the

type of event received (i.e. display-start or display-end).

Returns:

Nothing.

48 Copyright © 2014, QNX Software Systems Limited

API Reference

event.h

Declaration of the HNM Event structure and its associated functions.

Definitions in event.h

Preprocessor macro definitions for the event.h header file in the libhnm library.

Definitions:

#define hnm_EventClassShift 8

Number of bits to shift; used in hnm_EventTypeID and hnm_EventClassID

#define hnm_EventClassMask (0xffff << hnm_EventClassShift)

Mask to extract class ID; used by hnm_EventTypeID, hnm_EventClassID, and

hnm_Event_typeof

#define hnm_EventTypeMask ~hnm_EventClassMask

#define hnm_EventTypeID (hnm_EventType)(class << hnm_EventClassShift | (
type & hnm_EventTypeMask))

Aggregate the event class and subtype IDs into a single event-type ID.

#define hnm_EventClassID (hnm_EventClass)(event_id >> hnm_EventClassShift
)

Extract the event class ID from the event-type ID.

#define hnm_Event_typeof (event && hnm_EventClassID(event->type) == class
)

Macro used to perform runtime type-checking of events.

This macro evaluates to true if the specified event corresponds to the specified

event class.

#define EVENT_BASE queue_Element queue_elem ; \
 char name[256] ; \
 hnm_Priority priority ; \
 hnm_EventType type ; \
 \
 /* Callbacks associated with the Event structure. */ \
 bool (*appraise)(hnm_Event* self, void*
 data) ; \
 void (*service)(hnm_Event* self, void* data)

EVENT_BASE defines the base structure for events.

EVENT_BASE contains the following:

• queue_elem The queue member of the Event structure. This member must be

the first one defined in the structure to allow it to be used with the generic Queue

data structure and its associated functions.

Copyright © 2014, QNX Software Systems Limited 49

event.h

• name[256] The name of the event. If this string corresponds to an event name

in the policy configuration, the associated priority will be assigned to events with

that name.

• priority The priority of the event. The minimum value is HNM_DEFAULT_PRI

ORITY. The maximum value is HNM_MAX_PRIORITY.

• type The event type (e.g. display_start or display_end). A dis

play_start event signifies that an application or service wishes to display some

information in a window of a specified type. A display_end event may occur

when an application no longer has information to display (e.g. if a handsfree phone

call is terminated on the remote end).

The following callbacks are associated with the Event structure:

• (*appraise)() This callback is called to appraise the current event. This function

takes a pointer to the HNM data structure and the event instance as arguments.

It returns a Boolean flag to indicate whether to service the event.

• (*service)() This callback is called to service the current event.

Library:

libhnm

Typedefs in event.h

hnm_event

An abstract multimodal event structure.

Synopsis:

struct hnm_event hnm_Event {
 EVENT_BASE ;
};

Data:

EVENT_BASE

Defines the base structure for events.

Library:

libhnm

Description:

The hnm_Event structure is the base type for asynchronous system events that are

handled by the HNM. See EVENT_BASE (p. 49) for details.

50 Copyright © 2014, QNX Software Systems Limited

API Reference

hnm_EventClass

Enumeration of HNM event class IDs.

Synopsis:

#include <hnm/event.h>

typedef enum hnm_event_class hnm_EventClass;

Library:

libhnm

Description:

Events are categorized into classes that correspond to the interaction types (e.g.,

display, audio). The HNM subsystem defines an enumeration of event class IDs that

are used to distinguish the different classes of events.

hnm_event_class

Enumeration of HNM event class IDs.

Synopsis:

#include <hnm/event.h>

typedef enum hnm_event_class{
 HNM_EVENT_NONE == 0
 HNM_EVENT_DISPLAY
 HNM_EVENT_UNKNOWN
} hnm_EventClass;

Data:

HNM_EVENT_NONE

HNM_EVENT_DISPLAY

HNM_EVENT_UNKNOWN

Add new event types before this entry.

Library:

libhnm

Copyright © 2014, QNX Software Systems Limited 51

event.h

Description:

Events are categorized into classes that correspond to the interaction types (e.g.,

display, audio). The HNM subsystem defines an enumeration of event class IDs that

are used to distinguish the different classes of events.

hnm_EventPriorityMap

This is an alias for the hnm_event_priority_map structure.

Synopsis:

#include <hnm/event.h>

typedef struct hnm_event_priority_map hnm_EventPriorityMap;

Library:

libhnm

Description:

hnm_event_priority_map

Structure representing a single mapping of an event name to a priority value.

Synopsis:

struct hnm_event_priority_map hnm_EventPriorityMap {
 char event_name [256];
 hnm_Priority priority ;
 hnm_EventPriorityMap * next ;
};

Data:

char event_name[256]

The name of an event. The name can be at most 255 characters in length

(plus a null terminator).

hnm_Priority priority

The priority that has been assigned to the named event.

hnm_EventPriorityMap * next

A pointer to the next event priority map in the global map list.

52 Copyright © 2014, QNX Software Systems Limited

API Reference

Library:

libhnm

Description:

hnm_EventType

Event Type ID.

Synopsis:

#include <hnm/event.h>

typedef unsigned short hnm_EventType;

Library:

libhnm

Description:

hnm_Priority

A type representing the priority level.

Synopsis:

#include <hnm/event.h>

typedef unsigned int hnm_Priority;

Library:

libhnm

Description:

Enumerations in event.h

hnm_EventClass

Alias for the event class ID type enumeration

Synopsis:

#include <hnm/event.h>

typedef hnm_event_class hnm_EventClass;

Library:

libhnm

Copyright © 2014, QNX Software Systems Limited 53

event.h

Description:

This type is an alias for the event class ID type enumeration, hnm_event_class (p.

51).

hnm_event_class

Enumeration of HNM event class IDs.

Synopsis:

#include <hnm/event.h>

typedef enum hnm_event_class{
 HNM_EVENT_NONE == 0
 HNM_EVENT_DISPLAY
 HNM_EVENT_UNKNOWN
} hnm_EventClass;

Data:

HNM_EVENT_NONE

HNM_EVENT_DISPLAY

HNM_EVENT_UNKNOWN

Add new event types before this entry.

Library:

libhnm

Description:

Events are categorized into classes that correspond to the interaction types (e.g.,

display, audio). The HNM subsystem defines an enumeration of event class IDs that

are used to distinguish the different classes of events.

hnm_priority_e

Enumeration of priority levels defined for the HNM subsystem.

Synopsis:

#include <hnm/event.h>

 enum hnm_priority_e{
 HNM_MIN_PRIORITY == 0
 HNM_MAX_PRIORITY == 7
 HNM_NUM_PRIORITY_LEVELS

54 Copyright © 2014, QNX Software Systems Limited

API Reference

 HNM_DEFAULT_PRIORITY == HNM_MIN_PRIORITY
};

Data:

HNM_MIN_PRIORITY

Lowest priority.

HNM_MAX_PRIORITY

Highest priority.

HNM_NUM_PRIORITY_LEVELS

HNM_DEFAULT_PRIORITY

Library:

libhnm

Description:

Copyright © 2014, QNX Software Systems Limited 55

event.h

event-source.h

Structures and the register function for event-source plugins.

To register with the HNM, plugins must use the hnm_register_module() (p. 59) function.

Typedefs in event-source.h

hnm_EventSource

This is an alias for the hnm_event_source structure.

Synopsis:

#include <hnm/event-source.h>

typedef struct hnm_event_source hnm_EventSource;

Library:

libhnm

Description:

hnm_event_source

Structure that defines the form of event-source plugins for the HNM.

Synopsis:

struct hnm_event_source hnm_EventSource {
 char * name ;
 int connection_id ;
 void * data ;
 hnm_EventPriorityMap * priority_map ;
 int(* open)(hnm_EventSource *event_source, int channel_id);
 void(* close)(hnm_EventSource *event_source);
 hnm_Event *(* read_event)(hnm_EventSource *event_source);
};

Data:

char * name

The name of the application that is associated with the event source (e.g.

HFP for the Bluetooth handsfree phone system).

int connection_id

56 Copyright © 2014, QNX Software Systems Limited

API Reference

The connection ID (i.e. file descriptor or connection ID) used to communicate

with the plugin. This member must be initialized in the (*open)() callback

and is used to poll the plugin for input.

void * data

The private data associated with the specialized per-module

hnm_EventSource.

hnm_EventPriorityMap * priority_map

The global mapping of event names to priorities for the current event-source

instance.

int(* open)(hnm_EventSource *event_source, int channel_id)

Called by the HNM subsystem when a plugin is initially loaded via dlopen()

to open the event source. Returns a file descriptor associated with the event

source, if successful; otherwise, returns a negative value.

void(* close)(hnm_EventSource *event_source)

Called by the HNM subsystem when a plugin is being released via dlclose().

hnm_Event *(* read_event)(hnm_EventSource *event_source)

Read the event parameters from the event source.

Library:

libhnm

Description:

This structure declares the interface used for dynamically loading code into an existing

HNM runtime environment. Once this code is loaded, the known layout of objects can

be relied upon to enable the module.

Copyright © 2014, QNX Software Systems Limited 57

event-source.h

hnm_Module

This is an alias for the hnm_module structure.

Synopsis:

#include <hnm/event-source.h>

typedef struct hnm_module hnm_Module;

Library:

libhnm

Description:

hnm_module

Structure that represents an event-source module.

Synopsis:

struct hnm_module hnm_Module {
 struct pollfd * poll_entry ;
 hnm_EventSource event_source ;
 hnm_Module * next ;
};

Data:

struct pollfd * poll_entry

The entry in a poll list that is used to poll events on the module.

hnm_EventSource event_source

The event source that is plugged into the HNM via the current module

instance.

hnm_Module * next

The next module in the list.

Library:

libhnm

58 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

Event-source modules are represented by a module type that encloses a definition of

the specific event-source data and callbacks. This data structure also provides a

mechanism to chain the modules in a list.

Functions in event-source.h

hnm_register_module()

Register the specified event source as a module of the HNM subsystem.

Synopsis:

#include <hnm/event-source.h>

hnm_Module* hnm_register_module(hnm_EventSource *event_source, void
*private_data)

Arguments:

event_source

The event source being registered as a module with the HNM subsystem.

private_data

The private data to associate with the event source.

Library:

libhnm

Description:

Modules that wish to register with the HNM subsystem must call the

hnm_register_module() function. This function adds the module to the list of managed

event sources associated with the HNM subsystem. The new module is added to the

front of the list of registered modules. This function is defined in the HNM subsystem's

scope.

Returns:

A pointer to the hnm_module structure that is created to manage the specified event

source.

Copyright © 2014, QNX Software Systems Limited 59

event-source.h

messaging.h

Declaration of the Messaging PPS object used by the HNM.

Definitions in messaging.h

Preprocessor macro definitions for the messaging.h header file in the libhnm library.

Definitions:

#define HNM_PPS_MESSAGING_OBJECT_PATH "Messaging?server,nopersist"

Definition of the PPS path for the Messaging object.

The Messaging object is created as a server object with persistence disabled. Clients

connect to the Messaging server to receive messages informing them that a transient

notification is ready to be displayed.

#define HNM_PPS_MESSAGING_INITIALIZE { \
 .type = HNM_PPS_OBJECT_MESSAGING, \
 .fd = -1, \
 .path = HNM_PPS_MESSAGING_OBJECT_PATH, \
 .pollfd = NULL, \
 .object_data = NULL, \
 .pps_handler = hnm_Messaging_ppsHandler, \
 .pps_update = NULL, \
} ;

HNM_PPS_MESSAGING_INITIALIZE defines the static initializer for the Messaging

PPS object. This initializes a static declaration of an hnm_Messaging object.

HNM_PPS_MESSAGING_INITIALIZE sets the specified structure members:

• .type PPS object ID used by the Messaging object.

• .fd File descriptor (-1) for the Messaging object.

• .path Path to the Messaging object (e.g., /pps/services/hmi-notifica

tion/Messaging).

• .pollfd List entry used to poll for events on the associated PPS object.

• .object_data Object-specific data.

• .pps_handler Pointer to the hnm_Messaging_ppsHandler() function.

• .pps_update Internal use only.

Library:

libhnm

60 Copyright © 2014, QNX Software Systems Limited

API Reference

Typedefs in messaging.h

hnm_Messaging_Client

Alias for hnm_messaging_client_s.

Synopsis:

#include <hnm/messaging.h>

typedef struct hnm_messaging_client_s hnm_Messaging_Client;

Library:

libhnm

Description:

This is an alias for the hnm_messaging_client_s structure.

hnm_messaging_client_s

Structure used to represent a Messaging client.

Synopsis:

struct hnm_messaging_client_s hnm_Messaging_Client {
 char * id ;
};

Data:

char * id

The PPS ID of the subscribed client.

Library:

libhnm

Description:

The hnm_messaging_client_s (p. 61) structure encapsulates data about clients that

subscribe to the Messaging PPS object.

Copyright © 2014, QNX Software Systems Limited 61

messaging.h

hnm_Messaging

Alias for hnm_messaging_s.

Synopsis:

#include <hnm/messaging.h>

typedef struct hnm_messaging_s hnm_Messaging;

Library:

libhnm

Description:

This is an alias for the hnm_messaging_s structure.

hnm_messaging_s

A structure representing the Messaging PPS object.

Synopsis:

struct hnm_messaging_s hnm_Messaging {
 PPS_OBJECT_BASE ;
 hnm_Messaging_Client * clients ;
 int num_clients ;
};

Data:

PPS_OBJECT_BASE

Defines the base structure for PPS objects.

hnm_Messaging_Client * clients

The list of clients that have subscribed to the Messaging PPS object.

int num_clients

The number of clients that have subscribed to the Messaging PPS object.

Library:

libhnm

62 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

This object is a specialization of the pps_Object (p. 66) structure that provides a

mechanism that a notification manager can use to send transient notifications to

subscribed clients. This structure can be used directly with pps_Object methods.

Functions in messaging.h

hnm_Messaging_ppsHandler()

Handle PPS messages to the Messaging object.

Synopsis:

#include <hnm/messaging.h>

void hnm_Messaging_ppsHandler(pps_Object *pps_object)

Arguments:

pps_object

A pointer to the location in memory of a PPS Object. This object provides

the private data used by this call to handle the request.

Library:

libhnm

Description:

The hnm_Messaging_ppsHandler() function parses an incoming PPS message and

determines whether to connect or disconnect the client from the Messaging object.

Returns:

Nothing.

hnm_Messaging_sendTransient()

Send a transient notification request to all connected clients.

Synopsis:

#include <hnm/messaging.h>

void hnm_Messaging_sendTransient(hnm_Messaging *messaging_obj, const hnm_Event
 *event)

Arguments:

Copyright © 2014, QNX Software Systems Limited 63

messaging.h

messaging_obj

A pointer to the messaging object that manages the connected client list.

The clients of this server object are notified of the transient message

specified by event.

event

The event structure used to construct the transient notification. The

ownership of this event is retained by the calling context responsible for

deleting it.

Library:

libhnm

Description:

The hnm_Messaging_sendTransient() function sets up a PPS object describing a

transient notification that must be shown by the HMI. This message is transmitted to

each client that is connected to the Messaging object. Presumably, each connected

client represents a different HMI.

Returns:

Nothing.

64 Copyright © 2014, QNX Software Systems Limited

API Reference

pps.h

Declaration of a generic PPS object structure.

Definitions in pps.h

Preprocessor macro definitions for the pps.h header file in the libhnm library.

Definitions:

#define PPS_OBJECT_BASE pps_ObjectId type ;
 \
 int fd ; \
 char path[517] ; \
 struct pollfd* pollfd ; \
 void* object_data ; \
 void (*pps_handler)(pps_Object* object) ; \
 void (*pps_update)(pps_Object* object) ; \
 int (*open)(pps_Object* self, const char* basename) ; \

 void (*close)(pps_Object* self) ; \
 int (*read)(pps_Object* self, char** buffer) ; \
 int (*write)(pps_Object* self, const char* pps_data,
unsigned pps_data_size) ; \
 int (*addToPollList)(pps_Object* self, struct pollfd
poll_list[], unsigned poll_list_size)

PPS_OBJECT_BASE defines the base structure for PPS objects.

PPS_OBJECT_BASE contains the following:

• type The object ID that identifies the derived object type.

• fd The file descriptor of the PPS object. This can be passed to a poll() system call

to wait for input on the associated PPS object. If fd is less than zero, then the

PPS object is currently closed.

• path The path of the PPS object. The length of the path can be a maximum of

517 characters. This path is relative to the base PPS URI assigned to the PPS

Object subsystem.

• pollfd A pointer to a pollfd list entry used to poll for events on the associated

PPS object.

• object_data A pointer to object-specific data. This mechanism provides some

rudimentary polymorphism by associating object-specific member data with the

high-level PPS object.

• pps_handler A pointer to a handler callback function that's called by the HNM

system whenever a PPS message is received from a connecting client.

• pps_update Callback to push changes to the Status object to subscribers of

the PPS interface.

NOTE: For the functions contained here, see Functions in pps.h (p. 67).

Library:

libhnm

Copyright © 2014, QNX Software Systems Limited 65

pps.h

Typedefs in pps.h

pps_Object

Alias for pps_object.

Synopsis:

#include <hnm/pps.h>

typedef struct pps_object pps_Object;

Library:

libhnm

Description:

This is an alias for the pps_object structure.

pps_object

PPS Object structure data.

Synopsis:

struct pps_object pps_Object {
 PPS_OBJECT_BASE ;
};

Data:

PPS_OBJECT_BASE

Defines the base structure for PPS objects.

Library:

libhnm

Description:

The pps_object (p. 66) structure provides a uniform interface for all PPS object

definitions. To create a derived pps_Object type, declare PPS_OBJECT_BASE as

the first member and then declare any specialized members. This allows the specialized

object to be processed via the various PPS functions defined here.

66 Copyright © 2014, QNX Software Systems Limited

API Reference

pps_ObjectId

Type representing PPS object IDs.

Synopsis:

#include <hnm/pps.h>

typedef unsigned pps_ObjectId;

Library:

libhnm

Description:

Functions in pps.h

pps_encoder_strerror()

Get the error message that corresponds to the encoder error code.

Synopsis:

#include <hnm/pps.h>

const char* pps_encoder_strerror(pps_encoder_error_t code)

Arguments:

code

A pps_encoder error code for which a matching error message is being

requested.

Library:

libhnm

Description:

Use the pps_encoder_strerror() function to determine the cause of a failure reported

by a PPS encoder object.

Returns:

A string containing an error message that corresponds to the specified error code.

Copyright © 2014, QNX Software Systems Limited 67

pps.h

pps_decoder_strerror()

Get the error message that corresponds to the decoder error code.

Synopsis:

#include <hnm/pps.h>

const char* pps_decoder_strerror(pps_decoder_error_t code)

Arguments:

code

A pps_decoder error code for which a matching error message is being

requested.

Library:

libhnm

Description:

Use the pps_decoder_strerror() function to determine the cause of a failure reported

by a PPS decoder object.

Returns:

A string containing an error message that corresponds to the specified error code.

pps_Object_addToPollList()

Add an open PPS object to the specified poll list.

Synopsis:

#include <hnm/pps.h>

int pps_Object_addToPollList(pps_Object *pps_object, struct pollfd poll_list[],
 unsigned poll_list_size)

Arguments:

pps_object

A pointer to the structure that represents the PPS object's file descriptor to

be added to the specified poll list.

poll_list

68 Copyright © 2014, QNX Software Systems Limited

API Reference

An array that represents the list of file descriptors to poll. The specified PPS

object will be added to this list if possible.

poll_list_size

The size of the provided poll list. This represents the maximum number of

file descriptors that can be added to the list.

Library:

libhnm

Description:

The pps_Object_addToPollList() function adds an open PPS object to the specified

poll list and then updates the PPS object's poll_fd member to point to the poll entry

that corresponds to the object. This allows the revents mask associated with the PPS

object to be accessed directly via the object's structure.

Returns:

The index of the current structure in the poll list.

pps_Object_close()

Close the specified PPS object.

Synopsis:

#include <hnm/pps.h>

void pps_Object_close(pps_Object *pps_object)

Arguments:

pps_object

A pointer to the structure that represents the PPS object to be closed by

this call. If the object isn't open, this call has no effect.

Library:

libhnm

Copyright © 2014, QNX Software Systems Limited 69

pps.h

Description:

The pps_Object_close() function closes the object that was previously opened by

pps_Object_open() (or by any other means). If the specified object doesn't correspond

to an open PPS object, this function has no effect.

Returns:

Nothing.

pps_Object_open()

Open or create the PPS object specified by the provided pps_Object instance.

Synopsis:

#include <hnm/pps.h>

int pps_Object_open(pps_Object *pps_object, const char *basename)

Arguments:

pps_object

The pps_Object structure that represents the PPS object that is being

opened by this call.

basename

The base path where the PPS object can be found in the filesystem (usually

under /pps).

Library:

libhnm

Description:

Returns:

The file descriptor of the opened PPS object file.

pps_Object_read()

Stream data from the PPS object.

Synopsis:

#include <hnm/pps.h>

70 Copyright © 2014, QNX Software Systems Limited

API Reference

int pps_Object_read(pps_Object *pps_object, char **buffer)

Arguments:

pps_object

A pointer to the structure that represents the PPS object to read data from.

This object must be open for the read function to complete successfully.

buffer

An output argument that provides a pointer to the buffer that was created

to hold data read from the PPS object. The ownership of the memory

referenced by this argument is transferred to the calling context responsible

for deleting it.

Library:

libhnm

Description:

Use the pps_Object_read() function to stream data from the PPS object one line at a

time. You must call this function consecutively as many times as required to read

complete PPS messages that may span more than one line.

Returns:

The number of bytes read from the PPS object.

pps_Object_write()

Send a stream of PPS data to a PPS object.

Synopsis:

#include <hnm/pps.h>

int pps_Object_write(pps_Object *pps_object, const char *pps_data, unsigned
pps_data_size)

Arguments:

pps_object

A pointer to the structure that represents the PPS object to write data to.

This object must be open for the write function to complete successfully.

Copyright © 2014, QNX Software Systems Limited 71

pps.h

pps_data

A buffer containing the PPS string data to write to the PPS object. This data

must be NUL-terminated character data that represents valid PPS messages.

pps_data_size

The number of bytes of PPS data contained in the data buffer. The maximum

PPS message size is 1024 bytes.

Library:

libhnm

Description:

Returns:

The number of bytes that were actually written to the PPS object.

72 Copyright © 2014, QNX Software Systems Limited

API Reference

queue.h

Declaration of a generic queue data structure.

Typedefs in queue.h

queue_Element

Alias for queue_element.

Synopsis:

#include <hnm/queue.h>

typedef struct queue_element queue_Element;

Library:

libhnm

Description:

This is an alias for the queue_element structure.

queue_element

A data structure that represents a single element in a queue.

Synopsis:

struct queue_element queue_Element {
 queue_Element * prev ;
 queue_Element * next ;
 queue_Queue * queue ;
};

Data:

queue_Element * prev

The previous element in the queue. If this member is NULL, then the element

is likely the first item in the queue.

queue_Element * next

The next element in the queue. If this member is NULL, the element is

likely the last in the queue.

Copyright © 2014, QNX Software Systems Limited 73

queue.h

queue_Queue * queue

The queue that the element belongs to. If this member is NULL, the element

hasn't been added to a queue.

Library:

libhnm

Description:

queue_Queue

Alias for queue_queue.

Synopsis:

#include <hnm/queue.h>

typedef struct queue_queue queue_Queue;

Library:

libhnm

Description:

This is an alias for the queue_queue structure.

queue_queue

A generic Queue data structure.

Synopsis:

struct queue_queue queue_Queue {
 queue_Element * head ;
 queue_Element * tail ;
};

Data:

queue_Element * head

The first element or head of the queue. If head is NULL, the queue is

necessarily empty.

queue_Element * tail

74 Copyright © 2014, QNX Software Systems Limited

API Reference

The last element or tail of the queue. If tail is NULL, the queue is

necessarily empty.

Library:

libhnm

Description:

Functions in queue.h

queue_delete()

Delete an arbitrary element from a queue.

Synopsis:

#include <hnm/queue.h>

void queue_delete(void *element)

Arguments:

element

A pointer to the element to remove from its queue.

Library:

libhnm

Description:

The queue_delete() function deletes an arbitrary event element from its queue.

Returns:

Nothing.

queue_get_head()

Get a pointer to the first element in the specified queue.

Synopsis:

#include <hnm/queue.h>

void* queue_get_head(queue_Queue queue)

Copyright © 2014, QNX Software Systems Limited 75

queue.h

Arguments:

queue

The queue structure whose head element will be retrieved.

Library:

libhnm

Description:

The queue_get_head() function returns a void pointer to the first element in the

specified queue. This pointer can be cast by the calling context to the expected storage

type of the queue.

Returns:

A pointer to the head element in queue. If the queue is empty, the returned value will

be NULL.

queue_has_element()

Test whether an element is part of a queue.

Synopsis:

#include <hnm/queue.h>

bool queue_has_element(const queue_Queue *queue, const void *element)

Arguments:

queue

The queue for which the element is being tested for membership.

element

A pointer to a specialized structure that contains a queue_Element

structure as its first member. This element is tested for membership in the

specified queue.

Library:

libhnm

76 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

Given a queue_element data structure, the queue_has_element() function determines

whether it belongs to the specified queue. This test is performed in constant O(1)

time. Both the queue and element data remain unchanged following a call to this

function.

Returns:

A Boolean flag indicating whether element is (true) or is not (false) a member of

queue .

queue_is_empty()

Test whether the specified queue is empty.

Synopsis:

#include <hnm/queue.h>

bool queue_is_empty(const queue_Queue *queue)

Arguments:

queue

The queue whose cardinality will be evaluated.

Library:

libhnm

Description:

The queue_is_empty() function checks the cardinality of the specified queue and

reports success if it evaluates to zero.

Returns:

true if there are no elements in the specified queue; false otherwise.

queue_next_element()

Move to the next element following the specified one.

Synopsis:

#include <hnm/queue.h>

void* queue_next_element(void *element)

Copyright © 2014, QNX Software Systems Limited 77

queue.h

Arguments:

element

A pointer to an element structure that represents the queue element that is

currently being visited.

Library:

libhnm

Description:

The queue_next_element() function can be used to iterate over queued elements from

the head toward the tail.

Returns:

A pointer to the containing structure of the next element or NULL if no such element

exists.

queue_pop()

Remove the head element from the specified queue.

Synopsis:

#include <hnm/queue.h>

queue_Element* queue_pop(queue_Queue *queue)

Arguments:

queue

A pointer to a queue data structure whose head element is to be removed.

Library:

libhnm

Description:

The queue_pop() function will remove the head queue_Element instance from the

specified queue. The function is robust to instances where the provided queue is

empty; the queue remains unchanged in this scenario.

78 Copyright © 2014, QNX Software Systems Limited

API Reference

Returns:

A pointer to the queue_Element that was removed from the queue structure. If the

queue_Element is the first element of a containing structure, you should be able

to cast this pointer to the enclosing structure's type to access the specialized structure's

members.

queue_push()

Add an element to the tail of the queue.

Synopsis:

#include <hnm/queue.h>

bool queue_push(queue_Queue *queue, void *element)

Arguments:

queue

A pointer to the queue structure to which the element is being added.

element

A pointer to a specialized structure that contains a queue_Element

structure as its first element. This element is added to the specified queue

and its queue_Element members are updated.

Library:

libhnm

Description:

Given a queue_Element data structure, the queue_push() function adds the enclosing

data structure to the specified queue. This operation is performed in constant O(1)

time. The queue_Element structure that adorns the enclosing structure as well as

the queue structure itself are updated accordingly.

Note that an element can only ever be a member of a single queue. If the supplied

element is already a member of another queue, the push operation will fail.

Returns:

A flag indicating whether the element was (true) or was not (false) successfully

added to the queue.

Copyright © 2014, QNX Software Systems Limited 79

queue.h

status.h

Declaration of the PPS Status object used by the HNM.

Definitions in status.h

Preprocessor macro definitions for the status.h header file in the libhnm library.

Definitions:

#define EXTERN extern

#define STATUS_PPS_OBJECT_ID 0x0

Definition of the PPS object ID used by the Status object.

#define hnm_Status_Narrow (obj && obj->type == STATUS_PPS_OBJECT_ID) ? (
hnm_Status*)obj : NULL

Narrow a pps_Object to an hnm_Status structure whenever possible.

#define HNM_PPS_STATUS_OBJECT_PATH "Status"

Path to the PPS Status object.

#define HNM_PPS_STATUS_INITIALIZE { \
 .type = STATUS_PPS_OBJECT_ID, \
 .fd = -1, \
 .path = HNM_PPS_STATUS_OBJECT_PATH, \
 .pollfd = NULL, \
 .object_data = NULL, \
 .pps_handler = hnm_Status_ppsHandler, \
 .pps_update = hnm_Status_update, \
 .displayList = hnm_Status_displayList, \
 .getDisplayList = hnm_Status_getDisplayList, \
 .findDisplayEvent = hnm_Status_findDisplayEvent, \
}

HNM_PPS_STATUS_INITIALIZE defines the static initializer for the Status PPS

object. This initializes a static declaration of an hnm_Status object, allowing

applications that use the Status object to assign custom type IDs that are unique

to the application scope.

HNM_PPS_STATUS_INITIALIZE sets the specified structure members:

• .type PPS object ID used by the Status object.

• .fd File descriptor (-1) for the Status object.

• .path Path to the Status object (e.g., /pps/services/hmi-notifica

tion/Status).

• .pollfd List entry used to poll for events on the associated PPS object.

• .object_data Object-specific data.

• .pps_handler Pointer to the hnm_Status_ppsHandler() function.

• .pps_update Pointer to the hnm_Status_update() function.

• .displayList Pointer to the hnm_Status_displayList() function.

• .getDisplayList Pointer to the hnm_Status_getDisplayList() function.

80 Copyright © 2014, QNX Software Systems Limited

API Reference

• .findDisplayEvent Pointer to the hnm_Status_findDisplayEvent() function.

Library:

libhnm

Typedefs in status.h

hnm_Status

This is an alias for the hnm_status_s structure.

Synopsis:

#include <hnm/status.h>

typedef struct hnm_status_s hnm_Status;

Library:

libhnm

Description:

hnm_status_s

Data structure for the PPS Status object.

Synopsis:

struct hnm_status_s hnm_Status {
 PPS_OBJECT_BASE ;
 queue_Queue display_list ;
 bool update_display_list ;
 const queue_Queue *(* displayList)(hnm_Status *self);
 queue_Queue *(* getDisplayList)(hnm_Status *self);
 hnm_DisplayEvent *(* findDisplayEvent)(hnm_Status *self, const char
*event_name);
};

Data:

PPS_OBJECT_BASE

Defines the base structure for PPS objects.

queue_Queue display_list

A list of events that affect the display modality of a subscribed HMI.

bool update_display_list

Copyright © 2014, QNX Software Systems Limited 81

status.h

A flag that specifies whether the display_list has been changed since

the last update of the Status object. This is set automatically by some of

the accessor functions to ensure that changes to the display list are

propagated to clients that subscribe to the Status object.

const queue_Queue *(* displayList)(hnm_Status *self)

Callback referencing the function that provides read-only access to the

display list.

queue_Queue *(* getDisplayList)(hnm_Status *self)

Callback that provides read/write access to the display list.

hnm_DisplayEvent *(* findDisplayEvent)(hnm_Status *self, const char *event_name)

Callback that provides an accessor to find a named display event in the

display list associated with the current Status object.

Library:

libhnm

Description:

The hnm_Status structure is a specialization of the pps_Object (p. 66) structure and

therefore has an instance of that structure as its first member. This specialization

enhances the pps_Object with data that is specific to the PPS Status object.

Functions in status.h

hnm_Status_displayList()

Get the display event list of a PPS Status object.

Synopsis:

#include <hnm/status.h>

const queue_Queue* hnm_Status_displayList(hnm_Status *self)

Arguments:

82 Copyright © 2014, QNX Software Systems Limited

API Reference

self

A pointer to a pps_Object instance that is also an hnm_Status structure.

This object is the recipient of the displayList message.

Library:

libhnm

Description:

Given a pps_Object, this function:

• verifies that this object represents an hnm_Status type

• returns the display list associated with that object.

Returns:

A pointer to the display list associated with the Status object. If the object isn't of

the correct type, NULL is returned. The ownership of the memory referenced by the

pointer is retained by the called context and must not be deleted by the calling context.

hnm_Status_findDisplayEvent()

Find the named event in the display list.

Synopsis:

#include <hnm/status.h>

hnm_DisplayEvent* hnm_Status_findDisplayEvent(hnm_Status *self, const char
*event_name)

Arguments:

self

A pointer to the hnm_Status structure that represents the recipient object

of the method invocation.

event_name

The name of the event being sought in the display list.

Library:

libhnm

Copyright © 2014, QNX Software Systems Limited 83

status.h

Description:

The hnm_Status_findDisplayEvent() function walks the display list associated with

the specified Status object until either an event with the specified name is found

or the end of the list is reached.

Returns:

A pointer to an hnm_DisplayEvent whose name matches event_name. If no such event

is found, this function returns NULL.

hnm_Status_getDisplayList()

Get the display list of a PPS Status object and set the update flag.

Synopsis:

#include <hnm/status.h>

queue_Queue* hnm_Status_getDisplayList(hnm_Status *self)

Arguments:

self

A pointer to the hnm_Status instance that receives the getDisplayList

message.

Library:

libhnm

Description:

Given a pps_Object, this function:

• verifies that this object represents an hnm_Status type

• returns the display list associated with that structure.

This function also sets the update flag associated with the display list to ensure that

changes are propagated to subscribers of the PPS object.

Returns:

A pointer to the display list associated with the Status object. If the object isn't of

the correct type, NULL is returned. The ownership of the memory referenced by the

pointer is retained by the called context and must not be deleted by the calling context.

84 Copyright © 2014, QNX Software Systems Limited

API Reference

hnm_Status_ppsHandler()

Handle PPS I/O.

Synopsis:

#include <hnm/status.h>

void hnm_Status_ppsHandler(pps_Object *object)

Arguments:

object

The Object that received a message via PPS.

Library:

libhnm

Description:

This reads PPS messages from the PPS interface of the Status object and then

handles messages appropriately.

Returns:

Nothing.

hnm_Status_update()

Update the PPS object to reflect the current status.

Synopsis:

#include <hnm/status.h>

void hnm_Status_update(pps_Object *self)

Arguments:

self

A pointer to an hnm_Status object whose updates are pushed to subscribers

of the PPS interface. If the argument doesn't correspond to an actual status

object, no update takes place.

Copyright © 2014, QNX Software Systems Limited 85

status.h

Library:

libhnm

Description:

The hnm_Status_update() function updates the Status object to ensure that

subscribers are notified of changes.

Returns:

Nothing.

86 Copyright © 2014, QNX Software Systems Limited

API Reference

Index

C

configuration file (HNM) 15, 16
comments in 15
predefined sections in 16

D

display 13
sharing (HNM) 13

E

event-source plugins (HNM) 19, 20, 22, 24
Generic 20
HandsFreePhone 22
VirtualMechanic 24

event-source-generic.so 19
event-source-handsfree.so 19
event-source-vm.so 19
events (HNM) 11

G

Generic plugin (HNM) 20

H

HandsFreePhone plugin (HNM) 22
HFP states (HNM) 22
HMI Notification Manager, See HNM

HNM 9, 11, 12, 13, 15, 17, 19, 29
apps can share the display 13
command-line options 9
components 9
configuration file 15
display-control flags 13
event-source plugins 19
events 11
PPS objects 29
priorities 11
window types 12, 17

P

policy.cfg 15
PPS objects (HNM) 29
priorities (HNM) 11

T

Technical support 8
Typographical conventions 6

V

VirtualMechanic plugin (HNM) 24

W

window types (HNM) 12, 17

Copyright © 2014, QNX Software Systems Limited 87

HMI Notification Manager

88 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	HNM Components
	Event Processing
	Configuration
	Plugins
	The Generic plugin
	The HandsFreePhone plugin
	The VirtualMechanic plugin

	PPS Objects
	API Reference
	core.h
	Definitions in core.h
	Enumerations in core.h
	hnm_LogBufferId
	hnm_log_buffer_id

	Functions in core.h
	hnm_log()
	hnm_set_log_buffer()
	hnm_setLogVerbosity()

	display_event.h
	Definitions in display_event.h
	Typedefs in display_event.h
	hnm_DisplayEvent
	hnm_display_event
	hnm_window_type

	Enumerations in display_event.h
	hnm_WindowTypeID
	hnm_window_type_e

	Functions in display_event.h
	display_event_factory_get_next_event()
	display_event_window_type_id()
	display_event_window_type_name()
	hnm_display_event_appraise()
	hnm_DisplayEvent_create()
	hnm_DisplayEventFactory_findEvent()
	hnm_DisplayEventFactory_getDefaultEvent()
	hnm_DisplayEventFactory_init()
	hnm_DisplayEventFactory_InitWindowTypes()
	hnm_display_event_service()

	event.h
	Definitions in event.h
	Typedefs in event.h
	hnm_event
	hnm_EventClass
	hnm_event_class
	hnm_EventPriorityMap
	hnm_event_priority_map
	hnm_EventType
	hnm_Priority

	Enumerations in event.h
	hnm_EventClass
	hnm_event_class
	hnm_priority_e

	event-source.h
	Typedefs in event-source.h
	hnm_EventSource
	hnm_event_source
	hnm_Module
	hnm_module

	Functions in event-source.h
	hnm_register_module()

	messaging.h
	Definitions in messaging.h
	Typedefs in messaging.h
	hnm_Messaging_Client
	hnm_messaging_client_s
	hnm_Messaging
	hnm_messaging_s

	Functions in messaging.h
	hnm_Messaging_ppsHandler()
	hnm_Messaging_sendTransient()

	pps.h
	Definitions in pps.h
	Typedefs in pps.h
	pps_Object
	pps_object
	pps_ObjectId

	Functions in pps.h
	pps_encoder_strerror()
	pps_decoder_strerror()
	pps_Object_addToPollList()
	pps_Object_close()
	pps_Object_open()
	pps_Object_read()
	pps_Object_write()

	queue.h
	Typedefs in queue.h
	queue_Element
	queue_element
	queue_Queue
	queue_queue

	Functions in queue.h
	queue_delete()
	queue_get_head()
	queue_has_element()
	queue_is_empty()
	queue_next_element()
	queue_pop()
	queue_push()

	status.h
	Definitions in status.h
	Typedefs in status.h
	hnm_Status
	hnm_status_s

	Functions in status.h
	hnm_Status_displayList()
	hnm_Status_findDisplayEvent()
	hnm_Status_getDisplayList()
	hnm_Status_ppsHandler()
	hnm_Status_update()

	Index

