
Building and Customizing Target Images

QNX CAR™ Platform for Infotainment 2.1

©2014–2016, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 30, 2016

Contents
About This Guide..5

Typographical conventions..6

Technical support...8

Chapter 1: Target Images...9
Overview of an image, boot process, and filesystem layout...11

Chapter 2: Tools at a Glance..13

Chapter 3: Process to Generate an Image..15

Chapter 4: Build a Target Image...19
Sample image directory structure...22

Chapter 5: Image Configuration..25
Configuration file for mksysimage.py...26

Configuration file for mkimage.py..28

Calculating the size of target images and partitions...30

Target startup scripts..32

Chapter 6: Board Support Packages (BSPs)...33
Building a BSP..34

Chapter 7: Transferring an Image to a microSD card...35

Index...37

Building and Customizing Target Images

Contents

About This Guide

The Building and Customizing Target Images provides detailed information about how to modify OS

images for the QNX CAR platform. The guide describes the detailed steps, the utilities used, and the

resulting filesystem layout.

See:To find out about:

Target ImagesImages, the boot process, and filesystems

Tools at a GlanceTools for building images

Process to Generate an ImageFamiliarizing yourself with the process to create an

image

Build a Target ImageHow to build your own target image for the QNX CAR

platform

Image ConfigurationCustomizing a target image

Calculating the size of target images and

partitions

Calculating the image or partition size

Board Support Packages (BSPs)BSPs

Transferring an Image to a microSD cardTransferring an image to your target

© 2016, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

© 2016, QNX Software Systems Limited6

About This Guide

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

© 2016, QNX Software Systems Limited 7

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

© 2016, QNX Software Systems Limited8

About This Guide

http://www.qnx.com

Chapter 1
Target Images

When you complete a project, you must build a target image that your users can install on their target

platform. You do this by packaging all the artifacts that make up the complete target image:

• Board Support Packages (BSPs)

• the core OS and utilities

• HTML5 apps

• Qt runtime

• HMI

• Browser/WebKit

• other binaries

Typically, you wouldn't build all of these components yourself. Instead, you have these prebuilt binaries

available in your development environment when you install the QNX CAR platform.

Artifact Organization

When designing a system, you choose how to organize artifacts into one or more IFS files and partition

images. Partition images are then combined to produce target images:

• Image filesystems (IFS) (or .ifs files) are created by mkifs . An IFS is a single binary that is loaded

into RAM, generally on bootup by a bootloader or IPL. IFS files are usually quite minimal and

contain only the drivers and libraries needed to start the kernel and mount additional partitions.

Because an IFS is loaded into RAM and the files in it are more difficult to upgrade than files on a

regular filesystem, an IFS is usually used only for startup code and a few key libraries, especially

libraries that need to load early in the boot process to speed up boot time or improve performance.

In the case of the QNX CAR platform, for example, everything required to start a minimal system

and display the backup camera is stored in an IFS, but the HMI and apps are loaded from a storage

device. The primary IFS is automatically mounted to /proc/boot.

• Partition images (or .image files) are created by mkxfs . These files contain the contents of a

partition that are written to a storage device. A system might consist of a number of partitions. For

example, an SD image for the QNX CAR platform contains 3 partitions: a FAT16 partition for booting

and 2 QNX6 partitions (one for system data and another for user data). Partition images can contain

a variety of file types including IFS files. For the QNX CAR platform, the primary IFS is stored in

a FAT16 partition because most targets are capable of reading FAT16 with their default bootloader.

• Partition images are combined to produce target images (or .img files). A target image (also referred

to as a disk image or system image) contains an entire target system—a partition table and the

partition contents—and so is convenient to install. You can load a target image directly onto a

storage medium such as an SD card without having to modify partition information.

System Generation

In general terms, to generate a system image for the QNX CAR platform, you perform the following

steps:

© 2016, QNX Software Systems Limited 9

1. Develop the .build files that contain the scripts and files used by mkifs .

2. Run mkifs to generate IFS files.

3. Determine all the files to include in each partition and develop .build files to be used by mkxfs .

4. Run mkxfs to generate all the partition images.

5. Run diskimage to generate the partition table and write all the partition images to a single .img

file.

Because generating the various files is time-consuming and error-prone, this isn't the process we

recommend. Instead, the QNX CAR platform includes an mksysimage.py script that handles the

entire process of generating a system image. In fact, the mksysimage.py script supports multiple

platforms and a number of configurations per platform. For example, in the case of OMAP5432, the

mksysimage.py script produces images for SD card, EMMC, and EMMC + SATA SSD. For more

information on mksysimage.py , see the following sections:

• Process to Generate an Image

• Configuration file for mksysimage.py

• Build a Target Image

© 2016, QNX Software Systems Limited10

Target Images

Overview of an image, boot process, and filesystem layout

The steps that occur when the system starts up are as follows:

1. The processor begins executing at the reset vector.

2. The Initial Program Loader (IPL) locates the image filesystem (IFS) and transfers control to the

startup program in the image.

3. The startup program configures the system and transfers control to the procnto module (combined

microkernel and process manager).

4. The procnto module loads additional drivers and any application programs.

The reset vector is the address at which the processor begins executing instructions after the processor's

reset line has been activated. On the x86, for example, this is the address 0xFFFFFFF0.

The IPL minimally configures the hardware to create an environment that allows the startup program

microkernel to run.

The IFS is a file that contains the OS, your executables, and any data files that might be related to

your programs. The IFS contains a directory structure and some files.

To begin to create an image for your platform, you'll first need to understand the components of an

image and the boot process. The following illustration shows the boot sequence.

Startup header

Startup code

procnto

Boot script

Fi
le
s

Flash driver
TCP/IP stack
Hard disk driver
Configuration
etc.D

ir
ec
to
ry

st
ru
ct
u
re

ORCPU

Start

BIOS &
extension

ROM
monitor

IPL code
(from BSP)

Done
OR

OS image file

You can also use the QNX Momentics IDE to create a System Builder Project to generate an

image from scratch or to import an existing buildfile. For more information see “Build Images”

in the IDE User's Guide.

When the bootup process starts, the CPU executes code at the reset vector, which could be a BIOS,

ROM monitor, or an IPL. If it's a BIOS, then it'll find and jump to a BIOS extension (for example, a

network boot ROM or disk controller ROM), which will load and jump to the next step. If it's a ROM

monitor, typically uboot , then the ROM monitor jumps to the IPL code.

The IPL code does chip selects and sets up RAM, then jumps to the startup code. In either case, the

next thing that runs is some startup code that sets up some hardware and prepares the environment

for procnto to run.

The procnto module sets up the kernel and runs a boot script that contains drivers and other

processes (which may include those you specify), and any additional commands for running anything

else. The files included will be those as specified by the mkifs buildfile.

© 2016, QNX Software Systems Limited 11

Target Images

A buildfile specifies any files and commands to include in the image, the startup order for the

executables, the loading options for the files and executables, as well as the command-line arguments

and environment variables for the executables.

© 2016, QNX Software Systems Limited12

Target Images

Chapter 2
Tools at a Glance

To you generate an image, you'll need to familiarize yourself with the following tools used in the image

generation process.

More information about these tools is available in either the QNX CAR System Services Reference or

the QNX Neutrino RTOS Utilities Reference.

DescriptionUtility

Generates the various IFS files used by the QNX CAR platform. This tool concatenates multiple

build file segments to generate the appropriate build file for the platform and variant being built.

In addition, this tool sets the MKIFS_PATH variable as appropriate for the platform and variant.

gen-ifs

Generates a file (/etc/os.version) that contains relevant build and version details. This file is used

by the software update process.

gen-osversion

Generates an IFS (Image FileSystem�) from a .build file. The IFS is loaded on system startup.mkifs

Processes .tar files and handles the generation of partition images (.image �files) and target images

(.img files) by calling mkxfs and diskimage .

mkimage.py

A control script used to complete the imaging process, which includes the generation of the IFS,

mktar archive, and the resulting target image file.

mksysimage.py

Creates a .tar file that contains all the files, directories, symbolic links (along with their permissions,

user IDs and group IDs) used in a target image. The mktar utility uses a number of XML files

(fileset files) �to group files into sets that can be easily incuded or excluded.

mktar

A binary file that combines all of the filesystem files generated by mkx fs (the .ifs files) into one

file, the resulting image file.

diskimage

© 2016, QNX Software Systems Limited 13

Chapter 3
Process to Generate an Image

The process for generating a target image for the QNX CAR platform is described below.

Overall image generation process

The following illustration shows the process used to generate a QNX CAR platform target image:

Default
XML Files
mktar uses
as input

QNX CAR Image

mksysimage.py

gen-ifs

gen-osversion

mktar

mkimage.py mkxfs

mkifs

dos.xml

os.xml

.tar files

.img image
files for
each
partition

.ifs files

profile.xml

calls creates

calls

/etc/os.version

creates

OR

Customizable
XML File

Uses file
<platform>-mksysimage.cfg
to define default IFS, profiles,
image tars, and the config file
that is used by mkimage.py

creates

diskimage

Creates a buildfile
in order to create an image

Uses .cfg file
to define session

variants, partitions,
and image size calls

creates

Uses image.cfg
file to define image

Figure 1: Image generation process for the QNX CAR platform

mksysimage.py

The first utility to run in the image-generation process is the mksysimage.py utility script. This

Python script invokes other utilities to generate tar files and images for each platform. The script is

located at:

• For Linux:

$QNX_CAR_DEPLOYMENT /scripts/mksysimage.py

• For Windows:

%QNX_CAR_DEPLOYMENT% /scripts/mksysimage.py

where %QNX_CAR_DEPLOYMENT% is <install_location>/qnx660/deployment/qnx-car.

By default, mksysimage.py reads a platform-specific configuration file from:

© 2016, QNX Software Systems Limited 15

• For Linux:

$QNX_TARGET /<platform>/sd-boot/config/<platform>-mksysimage.cfg

• For Windows:

%QNX_TARGET%/<platform>/sd-boot/config/<platform>-mksysimage.cfg

where QNX_TARGET is <install_location>/qnx660/deployment.

The configuration files for the supported platforms are:

• imx61sabre-mksysimage.cfg

• jacinto5eco-mksysimage.cfg

• omap5uevm-mksysimage.cfg

For detailed information about changing the values in a config file for mksysimage.py , see

“Configuration file for mksysimage.py ”.

These configuration files define which tar files and images are generated. The image variants for each

platform are defined within this configuration file. By default, for each image variant,

mksysimage.py generates two tar files and one image:

DescriptionFilename

This tar file contains two QNX CAR2 filesystems that include

all files except MLO and IFS files.

<platform>-os.tar

This tar file contains a FAT16 filesystem that includes all

bootup files, such as MLO and IFS files.

<platform>-dos-<image_variant>.tar

The generated image includes the two tar files indicated above. You can change the default configuration

file, or specify your own by using the -c option in mksysimage.py to customize your tar files and

images. For more information about this utility, see mksysimage.py in the System Services

Reference. To see an example of the basic directory structure of an image generated for this release

of the QNX CAR platform, see “Sample image directory structure”.

gen-osversion

The gen-osversion utility generates the /etc/os.version file based on the specified build

environments. For more information about this utility, see gen-osversion in the System Services

Reference.

gen-ifs

The gen-ifs utility calls the mkifs utility to create the .ifs file(s) that are included in the final

target image. An IFS is a bootable image filesystem that contains the procnto module, your boot

script, and possibly other components such as drivers and shared objects. For more information about

this utility, see gen-ifs in the System Services Reference.

© 2016, QNX Software Systems Limited16

Process to Generate an Image

mktar

The mktar utility creates a tar file containing the filesystem for a specified variant. The result from

running this utility is a file called platform .tar that contains the QNX CAR filesystem for the specified

platform variant. This resulting file will be included in the QNX CAR2 image. In order to run, the

mktar utility will require binary content from the installed QNX CAR2 SDP. As input, the mktar
utility uses the dos-varian .xml and os.xml files; otherwise, it uses the default profile.xml file.

mkimage.py

The mkimage utility builds an image from each partition called <partition_name>.image. The QNX

CAR-specific Python script mkimage.py uses a configuration file (<platform>-<variant>.cfg) to define

session variants, partitions, and image size:

• The mkimage utility progresses and parses the command line, places the bootable image file(s)

first in the resulting output file, followed by embedded filesystem files, and any other files that

were on the command line.

• The mkimage.py script uses mkx fs (see mkifs and mkefs) to create the image files

(.image files) for each partition specified in the mkimage configuration file. The diskimage
utility creates the final image that combines all of the partition image files (<partition_name>.image)
into a single image.

Final image

The final step in the image-generation process for mksysimage.py is the creation of the OS image

(.img) for the platform. The resulting tar file will also be located in the same output directory as the

image.

© 2016, QNX Software Systems Limited 17

Process to Generate an Image

Chapter 4
Build a Target Image

To build your own target image:

1. Set up the environment variables for the QNX development environment:

• For Linux, enter the following command:

source install_location /qnx660-env.sh

where by default the install_location is $HOME /qnx660/.

• For Windows, enter the following command:

install_location \qnx660-env.bat

where by default the install_location is C:\qnx660.

As part of the installation process for the QNX CAR platform, a workspace was created for you that

contains the scripts and configuration files you'll be using. These files are located in the following

locations:

• Scripts:

• For Linux: $QNX_CAR_DEPLOYMENT /deployment/scripts/

• For Windows: %QNX_CAR_DEPLOYMENT% \deployment\scripts

where QNX_CAR_DEPLOYMENT is install_location /qnx660/deployment/qnx-car/.

• Configuration files:

• For Linux: $QNX_CAR_DEPLOYMENT /boards/<platform>/etc/

• For Windows: %QNX_CAR_DEPLOYMENT% \boards\<platform>\etc

2. Extract a BSP. For detailed instructions, see “Building a BSP”.

3. Create an output directory where you want to have the image generated.

You must specify a valid directory name; the directory must exist prior to running the

mksysimage.py script, otherwise the image won't be generated.

4. To generate a target system image, run the appropriate mksysimage.py command.

• For Linux, enter the following command:

mksysimage.sh -vvvvvvv -o outputPath platform.external

• For Windows, enter the following command:

mksysimage.bat -vvvvvvv -o outputPath platform.external

where outputPath is the location for the new system image. If this directory isn't empty, run

mksysimage.py with the -f option (mksysimage.py won't overwrite existing system images

unless -f is specified). Specify a filename according to your platform as shown in the following

table:

© 2016, QNX Software Systems Limited 19

FilenamePlatform

omap5uevm.externalTexas Instruments OMAP5432 EVM

jacinto5eco.externalTexas Instruments J5 ECO EVM811x EVM

imx61sabre.externalFreescale i.MX6Q SABRE Lite

The mksysimage.py utility generates images for various configurations. For example, for SABRE

Lite, image files are created for SD and SD/SATA:

• imx61sabre-dos-sd-sata.tar

• imx61sabre-dos-sd.tar

• imx61sabre-os.tar

• imx61sabre-sd-sata.img

• imx61sabre-sd.img

The following output shows the results from creating an image for the OMAP5432 board:

[info]: Generating os.version file...

[info] gen-osversion.py: Generated os.version file: [C:\Users\Public\repos\trunk\deployment\qnx-car\

scripts\..\..\..\target\etc\os.version]

date: Thu Oct 10 12:06:07 2013

project: Local Build

buildHost: WIN-M9DICV29QL6

buildID: Local Build

buildNum: Local Build

platform: omap5uevm.external

car2Branch: trunk

car2Rev: 7244

externalBranch: mainline

externalRev: 3171

[info]: Generating qnxcar/system/info PPS file...

[info]: Generating IFS [omap5-sd.ifs]...

** Building omap5-sd.ifs...

** Building omap5-emmc.ifs...

** Building omap5-emmc-sata.ifs...

** Building etc/secondary.ifs...

[info]: Copying Boot IFS: [omap5-sd.ifs] to qnx-ifs...

[info]: Generating Archive...

Locating files...

Writing tar file...

Locating files...

Writing tar file...

[info]: Generating Image...

Open tar: C:\myWork\myimage\omapExample\omap5uevm-os.tar

Open tar: C:\myWork\myimage\omapExample\omap5uevm-dos-sd.tar

Created temporary directory c:\users\admini~1\appdata\local\temp\tmpoklciy

data <-- accounts [dir]

.

.

.

base <-- /etc/system/hmi-notification/policy.cfg [file]

.

.

.

data <-- appinfo/menuentry/ApiDemos.bar [file]

data <-- var/pps/system/installer/upd/current/job.testEMll63ejTBOmgnEnAHlA6AA [file]

boot <-- /MLO [file]

boot <-- /qnx-ifs [file]

invoking: mkxfs -t qnx6fsimg c:\users\admini~1\appdata\local\temp\tmpo0ydtl/data.build c:\users\admini~1\appdata\local\temp\tmpo0ydtl/data.image

invoking: mkxfs -t qnx6fsimg c:\users\admini~1\appdata\local\temp\tmpo0ydtl/base.build c:\users\admini~1\appdata\local\temp\tmpo0ydtl/base.image

invoking: mkxfs -t fatfsimg c:\users\admini~1\appdata\local\temp\tmpo0ydtl/boot.build c:\users\admini~1\appdata\local\temp\tmpo0ydtl/boot.image

© 2016, QNX Software Systems Limited20

Build a Target Image

invoking: diskimage -c c:\users\admini~1\appdata\local\temp\tmpo0ydtl/image.cfg -o C:\myWork\myimage\

omapExample\omap5uevm-emmc.img

Removed temporary directory c:\users\admini~1\appdata\local\temp\tmpo0ydtl

Disk image created at C:\myWork\myimage\omapExample\omap5uevm-emmc.img

[info]: Generating os.version file...

[info] gen-osversion.py: Generated os.version file: [C:\Users\Public\repos\trunk\deployment\qnx-car\

deployment\scripts\..\..\..\target\etc\os.version]

date: Thu Oct 10 12:56:47 2013

project: Local Build

buildHost: WIN-M9DICV29QL6

buildID: Local Build

buildNum: Local Build

platform: omap5uevm.external

car2Branch: trunk

car2Rev: 7244

externalBranch: mainline

externalRev: 3171

[info]: Generating qnxcar/system/info PPS file...

[info]: Generating IFS [omap5-emmc-sata.ifs]...

** Building omap5-sd.ifs...

** Building omap5-emmc.ifs...

** Building omap5-emmc-sata.ifs...

** Building etc/secondary.ifs...

[info]: Copying Boot IFS: [omap5-emmc-sata.ifs] to qnx-ifs...

[info]: Generating Archive...

[warning]: Tar file already exists. (Use --force to force overwriting): [C:\myWork\myimage\

omapExample\omap5uevm-os.tar].

Locating files...

Writing tar file...

[info]: Generating Image...

DONE

WARNING: DISKIMAGE ONLY SUPPORT LITTLE ENDIAN.

Open tar: C:\myWork\myimage\omapExample\omap5uevm-dos-emmc-sata.tar

Created temporary directory c:\users\admini~1\appdata\local\temp\tmprozsm_

boot <-- /MLO [file]

boot <-- /qnx-ifs [file]

invoking: mkxfs -t fatfsimg c:\users\admini~1\appdata\local\temp\tmprozsm_/boot.build c:\users\admini~1\appdata\local\temp\tmprozsm_/boot.image

invoking: diskimage -c c:\users\admini~1\appdata\local\temp\tmprozsm_/image.cfg -o C:\myWork\

myimage\omapExample\omap5uevm-emmc-sata.img

Removed temporary directory c:\users\admini~1\appdata\local\temp\tmprozsm_

Disk image created at C:\myWork\myimage\omapExample\omap5uevm-emmc-sata.img

© 2016, QNX Software Systems Limited 21

Build a Target Image

Sample image directory structure

The following output shows the first three levels of a directory structure for a basic image:

.

./html5

./html5/common

./html5/common/fonts

./html5/common/img

./html5/common/js

./html5/common/themes

./html5/common/ui-framework

./html5/tools

./html5/tools/arm

./html5/tools/SenchaCMD

./html5/webworks

./html5/webworks/apps

./html5/webworks/apps-legacy

./html5/webworks/apps-legacy/CarControl/modules

./html5/webworks/tools

./qt

./qt/src

./qt/src/hmi

./target

./target/accounts

./target/accounts/1000

./target/appinstall

./target/appinstall/bars

./target/boards

./target/boards/armle-v7

./target/boards/common

./target/boards/imx61sabre

./target/boards/imx61sabre.external

./target/boards/imx61sabre/

./target/boards/jacinto5eco

./target/boards/jacinto5eco.external

./target/boards/jacinto5eco.external/

./target/boards/jacinto5eco/armle-v7

./target/boards/jacinto5eco/armle-v7/bin

./target/boards/jacinto5eco/armle-v7/boot

./target/boards/jacinto5eco/armle-v7/boot/build

./target/boards/jacinto5eco/armle-v7/boot/sys

./target/boards/jacinto5eco/armle-v7/lib

./target/boards/jacinto5eco/armle-v7/lib/dll

./target/boards/jacinto5eco/armle-v7/sbin

./target/boards/jacinto5eco/armle-v7/usr

./target/boards/jacinto5eco/armle-v7/usr/bin

./target/boards/jacinto5eco/armle-v7/usr/lib

./target/boards/jacinto5eco/armle-v7/usr/lib/graphics

./target/boards/jacinto5eco/armle-v7/usr/lib/graphics/jacinto5

./target/boards/jacinto5eco/

./target/boards/omap5uevm

© 2016, QNX Software Systems Limited22

Build a Target Image

./target/boards/omap5uevm.external

./target/boards/omap5uevm.external/

./target/boards/omap5uevm/

./target/deployment

./target/etc

./target/opt

./target/opt/asr

./target/opt/webkit

./target/opt/webkit/config

./target/opt/webkit/config/webkit

./target/root

./target/runtime-external

./target/scripts

./target/scripts/startup-support

./target/scripts/vncdiscovery

./target/usr

./target/usr/hmi

./target/usr/mlink

./target/usr/sbin

./target/usr/share

./target/var

./target/var/certificates

./target/var/certmgr

./target/var/db

./target/var/etc

./target/var/pps

./target/var/tmp

./target/var/twonky

./target/var/usb

./target/var/usb/usbd/services

./target/var/webplatform

© 2016, QNX Software Systems Limited 23

Build a Target Image

Chapter 5
Image Configuration

When you create your own OS image for your platform, you can modify various customizable options

in the configuration files associated with the mksysimage.py and mkimage utilities. These files

enable you to define files for the system image for a specific platform type and provide size and partition

information.

© 2016, QNX Software Systems Limited 25

Configuration file for mksysimage.py

A configuration file for mksysimage.py defines the components for a specific platform type.

For information about running the mksysimage.py Python script utility, see

mksysimage.py in the the System Services Reference.

The components defined by a mksysimage.py configuration file are:

• Specific IFS file that's renamed to qnx-ifs and is used as the default boot file

• The tar files to generate

• The tar files to include in the image

• Configuration file used to define the size of partitions for the image

You can find the default configuration file at

%QNX_CAR_DEPLOYMENT% /<board>/<platform>/sd-boot/config/platform -mksysimage.cfg where

%QNX_CAR_DEPLOYMENT% is <install_location>/qnx660/deployment/qnx-car. For example, the

default configuration file for the OMAP5432 board is as follows:

[sd]

default-ifs=omap5-sd.ifs

profiles=os.xml,dos-sd.xml

image-tars=omap5uevm-os.tar,omap5uevm-dos-sd.tar

image-config=omap5uevm-sd.cfg

[emmc]

default-ifs=omap5-emmc.ifs

profiles=os.xml,dos-emmc.xml

image-tars=omap5uevm-os.tar,omap5uevm-dos-emmc.tar

image-config=omap5uevm-emmc.cfg

[emmc-sata]

default-ifs=omap5-emmc-sata.ifs

profiles=os.xml,dos-emmc-sata.xml

image-tars=omap5uevm-dos-emmc-sata.tar

image-config=omap5uevm-emmc-sata.cfg

The contents of this particular configuration file reveal that this OMAP5432 board has three image

variants called sd , emmc , and emmc-sata , and each of these image variants defines the following:

DescriptionItem

The ifs image name used as the default bootup IFS (qnx-ifs).default-ifs

The mktar profiles used to generate tar files. The image-tars elements correlate directly with the profiles. The name of the

generated tar files are <platform>-<profile_name>.tar.

profiles

The tar files included in the image.image-tars

© 2016, QNX Software Systems Limited26

Image Configuration

DescriptionItem

The configuration file used for specifying the size of each partition in the resulting image file. The image-configuration files must be

in the %QNX_CAR_DEPLOYMENT% /<board>/<platform>/sd-boot/config/ directory.

image-config

© 2016, QNX Software Systems Limited 27

Image Configuration

Configuration file for mkimage.py

The mkimage.py Python script utility takes as input a configuration file that provides image

information.

For information about running the mkimage.py Python script utility, see mkimage.py
in the the System Services Reference.

The configuration file used by mkimage.py provides the following information:

• maximum size of the image

• size and number of partitions, to a maximum of four

• order of partitions

• type of partition

• path to the partition

For example, the following file shows the contents for the jacinto5eco-sd.cfg configuration file:

[disk]

heads=64

sectors_per_track=32

cylinders=3724

sector_size=512

[boot]

path=/dos

type=12

num_sectors=1048576

order=1

[base]

path=/base

type=179

num_sectors=1048576

order=3

[data]

path=/

type=178

num_sectors=4194304

order=4

DescriptionType

This section doesn't specify a partition, but rather determines the size of the image and the size of the

partitions. This section is required, must not be empty, must appear first in the file, and must be called

[disk].

[disk]

© 2016, QNX Software Systems Limited28

Image Configuration

DescriptionType

The number of heads for the data medium used.heads

The number of sectors for each track for the data medium used.sectors_per_track

The number of cylinders for the data medium.cylinders

The size of the sectors used to store the data.sector_size

A partition in the image. In the example above, [boot] is the first partition and contains boot information;

however, these partition names can be any name you specify, such as [base], and [data].

[partition_name]

Identifies the path for the partition.path

Represents the identifier for the type of partition. For information about partition types, see “Partitions” in

the System Architecture guide for QNX Neutrino.

type

The number of sectors for the partition.num_sectors

The order for the specified partition in the image.order

If the order is 1, then it's the bootable partition.

The example above shows that there are three partitions:

• [boot] is of type 12 (FAT), has a partition order of 1 (meaning the first partition in the image)

located at /dos. The configuration file used with mksysimage.py will indicate that this first

partition is the boot ifs and that the ifs file will be renamed to qnx-ifs.

• [base] is of type 179 (QNX 6.x), has a partition order of 3, and is located at /base.

• [data] is of type 178 (QNX 6.x), has a partition order of 4, and is located at the root /.

© 2016, QNX Software Systems Limited 29

Image Configuration

Calculating the size of target images and partitions

To customize the size of an image or partition, you need to modify the following variant-specific

configuration file:

%QNX_CAR_DEPLOYMENT% /<board>/<platform>/

sd-boot/config/<platform>-<image_variant>.cfg

Example

The configuration file for omap5uevm-emmc.cfg is as follows:

[disk]

heads=64

sectors_per_track=32

cylinders=3724

sector_size=512

[boot]

path=/dos

type=12

num_sectors=1048576

order=1

[base]

path=/base

type=179

num_sectors=1048576

order=3

[data]

path=/

type=178

num_sectors=4194304

order=4

The [boot] section in the configuration file specifies the first partition. A target image can support

at most four partitions.

Calculating the maximum size of a target image

To calculate the total size of the image, you must multiply the values given in the [disk] section of

the configuration file.

The disk section doesn't specify a partition; it provides important size information and must

appear at the top of the configuration file, before any partitions are specified.

heads

x sectors_per_track

© 2016, QNX Software Systems Limited30

Image Configuration

x cylinders

x sector_size

total maximum size of image

Therefore, for the OMAP5432 example for the emmc variant above, the maximum size of the image

would be 3.9 GB (3.63 GB actual) and would be calculated as follows:

64 heads

x 32 sectors_per_track

x 3724 cylinders

x 512 sector_size

3904897024 bytes for a total of 3.63 GB for the total maximum size

of the image

Limitations:

• The total size of all partitions can't exceed the total size of the image.

• The maximum number of heads is 255.

• The maximum number of sectors_per_track is 63.

Calculating the size of a partition

To calculate the size of a partition in the example above:

heads x sectors_per_track x cylinders = number_of_sectors

number_of_sectors x sector_size = partition size

64 x 32 x 3724 = 7626752

7626752 x 512 = 3904897024 bytes

Therefore, the size of this specific partition is 3724 MB.

© 2016, QNX Software Systems Limited 31

Image Configuration

Target startup scripts

Buildfiles let you incorporate scripts to be run on your target. The[+script] attribute in the buildfile

tells mkifs that the specified file is a script file, which is a sequence of commands that you want

procnto to execute when it's completed its own startup. Script files look like regular shell scripts,

except that:

• you can position special modifiers before the actual commands you want to run

• mkifs parses the script file's contents before placing them into the image

To run a command, its executable must be available when the script is executed. You can add the

executable to the image or get it from a filesystem that's started before the executable is required. The

latter approach results in a smaller image.

For more information about script files, see “The script file” in the Building Embedded Systems User's

Guide and mkifs in the Utilities Reference.

System Launch and Monitor (SLM)

The SLM service automates process management. The SLM process starts early in the boot sequence

to launch complex applications consisting of many processes that must start in a certain order. The

configuration file lists all the processes for SLM to manage, any dependencies between the processes,

the commands for launching the processes, and other properties.

For more information about configuring SLM, see “System Launch and Monitor (SLM)” in the System

Services Reference.

© 2016, QNX Software Systems Limited32

Image Configuration

Chapter 6
Board Support Packages (BSPs)

After you install the QNX OS, you can download any processor-specific Board Support Package (BSP)

from our website, http://community.qnx.com/sf/sfmain/do/viewProject/projects.bsp . The BSPs are

designed to help you get the QNX OS running on various supported platforms. To use a BSP, you must

either unzip the archive and build it on the command line or import it into the IDE.

To become more familiar with BSPs, see “Working with a BSP” in the Building Embedded Systems

guide.

A BSP typically includes an Initial Program Loader (IPL), a startup program, a default buildfile,

networking support, board-specific device drivers, system managers, utilities, and so on.

© 2016, QNX Software Systems Limited 33

http://community.qnx.com/sf/sfmain/do/viewProject/projects.bsp

Building a BSP

The QNX CAR platform includes BSPs for these reference boards:

• Texas Instruments OMAP5432 EVM

• Texas Instruments J5 ECO EVM811x EVM

• Freescale i.MX6Q SABRE Lite

To get these BSPs, go to the following location on the QNX download site:

http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/BSPAndDrivers

Then, follow the included instructions for unzipping the BSP onto your host system.

To build the BSP for your board:

1. In the directory where you unzipped the BSP, enter this command:

make

2. Copy the resulting BSP binaries to your QNX CAR workspace.

In the reference board BSPs, the prebuilt directory contains all that's needed for the image,

so you can copy the binaries from there. But if you changed any BSP content and are

rebuilding the image, the binaries need to come from the install directory, meaning the

copy commands shown below should be modified to refer to this other directory.

• For Linux:

Copy commandBoard

cp -r prebuilt/armle-v7 $QNX_CAR_DEPLOYMENT/boards/omap5uevmOMAP5432

cp -r prebuilt/armle-v7 $QNX_CAR_DEPLOYMENT/boards/jacinto5ecoJ5 ECO

cp -r prebuilt/armle-v7 $QNX_CAR_DEPLOYMENT/boards/imx61sabreSABRE Lite

where $QNX_CAR_DEPLOYMENT is <install_location>/qnx660/deployment/qnx-car.

• For Windows:

Copy commandBoard

cp -r prebuilt\armle-v7 %QNX_CAR_DEPLOYMENT%\boards\omap5uevmOMAP5432

cp -r prebuilt\armle-v7 %QNX_CAR_DEPLOYMENT%\boards\jacinto5ecoJ5 ECO

cp -r prebuilt\armle-v7 %QNX_CAR_DEPLOYMENT%\boards\imx61sabreSABRE Lite

where %QNX_CAR_DEPLOYMENT% is <install_location>\qnx660\deployment\qnx-car.

To see the basic directory structure for an image generated for this platform release, see “Sample

image directory structure”.

© 2016, QNX Software Systems Limited34

Board Support Packages (BSPs)

http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/BSPAndDrivers

Chapter 7
Transferring an Image to a microSD card

For QNX CAR 2.1, a 4GB Class 4 SD card is the minimum requirement, but we recommend Class 10

cards. To identify this SD card type, look on the card for a “C” character with a number inside the

character. Cards without a class indication are Class 0—don't use them.

The 16GB SanDisk Ultra
®

microSDHC
™

UHS-I SD cards have been tested with the QNX CAR

platform and are recommended.

To transfer a QNX CAR image to a microSD card for your target, follow these OS-specific steps:

Command / instructionsHost OS

sudo dd bs=1048576 if=your_image of=/dev/sdxLinux

This command causes the dd utility to write 1MB chunks of data to the disk at a time. In

addition, the command assumes that sdx is the SD card.

The device name shouldn't include a partition suffix. For example, don't use /dev/sdx1.

However, the device name can be /dev/mmcblk0 on some Linux distributions.

Windows 1. Download and install Win32 Disk Imager from this site:

http://sourceforge.net/projects/win32diskimager/

2. Using Win32 Disk Imager, write the .img file to your microSD card.

Now, boot the image on your target board. The instructions vary with the board type:

Freescale i.MX6Q SABRE Lite board

1. Insert the SD card you prepared earlier into the lower slot (i.e., the large, full-size SD

card slot) on the SABRE Lite board.

2. Press the Reset button.

3. Interrupt the countdown by pressing any key during the first boot of the system.

4. Enter the following commands to prepare the U-Boot environment variables for booting

the QNX CAR system:

MX6Q SABRELITE U-Boot> setenv sdslot '0'

MX6Q SABRELITE U-Boot> setenv loadaddr '0x10800000'

MX6Q SABRELITE U-Boot> setenv bootifs 'qnx-ifs'

MX6Q SABRELITE U-Boot> setenv bootcmd_fatload 'mmc dev ${sdslot}; fatload mmc ${sdslot}:1\z

${loadaddr} ${bootifs}; go ${loadaddr}'

MX6Q SABRELITE U-Boot> setenv bootcmd 'run bootcmd_fatload'

MX6Q SABRELITE U-Boot> saveenv

5. Type boot or press the Reset button.

© 2016, QNX Software Systems Limited 35

http://sourceforge.net/projects/win32diskimager/

This action restarts the QNX CAR system.

6. Program the QNX IPL onto your board.

After the QNX CAR system starts and the HMI comes up, flash the QNX IPL. At the

console prompt on your target, issue the following command:

ipl-update-imx6.sh /dos/ipl-mx6q-sabrelite.bin

This step prevents issues with older boot loaders from occurring on the i.MX6Q

SABRE Lite board. The ipl-update-imx6.sh script replaces the existing boot loader with

the QNX boot loader. The next time you boot, the QNX IPL will load the QNX CAR system.

All other board types

1. Insert the SD card into your target board and power on the board.

The board automatically boots and prompts you to calibrate your screen.

2. Follow the instructions to calibrate the screen.

After you do this, the HMI appears on your display.

You can configure your reference board for boot optimization, as explained in the Boot

Optimization Guide.

© 2016, QNX Software Systems Limited36

Transferring an Image to a microSD card

Index

[disk] 28

B

Board Support Packages, See BSPs

boot process 11

bootup process 11

BSP 9 , 34

building for your board 34

BSPs 33

content 33

obtaining 33

build 19

image 19

buildfile 12

C

configure 25–26 , 28 , 30

image 25

image partitions 30

mkimage.py 28

mksysimage.py 26

variants 26

cylinders 29

F

filesystem 11

layout 11

G

gen-ifs 13 , 16

image generation process 16

gen-osversion 13 , 16

generate 15

image 15

generate process 16–17

gen-ifs 16

mkimage 17

mksysimage.py 17

mktar 17

H

heads 29

HMI 9

HTML5 apps 9

I

ifs 26

image 9 , 11–13 , 15–16 , 19 , 22 , 25–28 , 30–31

artifacts 9

binaries 9

Browser 9

build 19

buildfile 12

calculate image size 30

calculate partition size 31

configuration 25

core OS 9

customize partition size 30

directory structure (example) 22

filesystem layout 11

gen-ifs script 13

gen-osversion script 13

generation process 16

HMI 9

HTML5 apps 9

ifs 26

image-config 27

image-tars 26

maximum size 28

mkifs utility 13

mkimage script 13

mksysimage script 13

mktar script 13

number of partitions 28

order of partitions 28

partition size 28

partition type 28

path to partition 28

process to generate 15

profiles 26

Qt runtime 9

startup 11

target 9

variants 26

WebKit 9

image-config 27

© 2016, QNX Software Systems Limited 37

Index

image-tars 26

Initial Program Loader, See IPL

IPL 11

IPL code 11

M

mkifs 13

mkimage 13 , 17 , 28

image generation process 17

mkimage.py 17 , 28–29

configure 28

cylinders 29

example 28

heads 29

maximum size 28

num_sectors 29

number of partitions 28

order 29

partition order 28

partition size 28

partition type 28

partition_name 29

path 29

path to partition order 28

Python script 17

sector_size 29

sectors_per_track 29

type 29

mksysimage.py 13 , 15–17 , 26

configure 26

gen-ifs 13

gen-ifs overview 16

gen-osversion 13

image generation process 17

mkifs 13

mkimage 13

mkimage overview 17

mktar 13

mktar overview 17

Python script 15

script overview 17

supported platforms 16

mktar 13 , 17

image generation process 17

N

num_sectors 29

number of partitions 28

O

order (mkimage.py config) 29

order of partitions 28

OS 9

image 9

P

partition 28 , 30–31

calculate size 31

customize size 30

number 28

order 28

path to 28

size 28

type 28

partition type 28

partition_name 29

path (mkimage.py config) 29

path to partition 28

platforms 16

procnto 11

starting 11

profiles 26

Q

QNX_CAR_DEPLOYMENT 15

Qt runtime 9

R

reset vector 11

S

script 32

startup 32

script files 32

scripts 13

gen-ifs 13

gen-osversopn 13

mkifs 13

mkimage 13

© 2016, QNX Software Systems Limited38

Index

scripts (continued)

mksysimage.py 13

mktar 13

sector_size 29

sectors_per_track 29

size of image 28

size of partitions 28

SLM 32

startup 11

image 11

IPL 11

reset vector 11

startup script 32

supported platforms 16

System Launch and Monitor 32

T

target 9 , 19 , 32

build image 19

image 9

startup script 32

technical support 8

type (mkimage.py config) 29

typographical conventions 6

V

variants 26

W

Webkit 9

© 2016, QNX Software Systems Limited 39

Index

© 2016, QNX Software Systems Limited40

Index

	Contents
	About This Guide
	Typographical conventions
	Technical support

	Target Images
	Overview of an image, boot process, and filesystem layout

	Tools at a Glance
	Process to Generate an Image
	Build a Target Image
	Sample image directory structure

	Image Configuration
	Configuration file for mksysimage.py
	Configuration file for mkimage.py
	Calculating the size of target images and partitions
	Target startup scripts

	Board Support Packages (BSPs)
	Building a BSP

	Transferring an Image to a microSD card
	Index

