
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

Automatic Speech Recognition
Developer's Guide

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, February 20, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: Automatic Speech Recognition ..9

Process control flow ..11

Chapter 2: Extending ASR ..13

Anatomy of a module ..14

Prompt module ...15

Audio modules ...16

Recognition module ..17

Conversation modules ...19

The search module ..20

The car-media module ...23

The dialer module ...26

Adding a conversation module ...31

Specifying NLAL grammars ..32

Chapter 3: API Reference ...35

asr.h ..36

Definitions in asr.h ..36

Data types in asr.h ...36

Functions in asr.h ..37

asra.h ..54

Data types in asra.h ...54

Functions in asra.h ..54

asrm.h ...64

Enumerations in asrm.h ...64

Functions in asrm.h ...65

asrp.h ..103

Data types in asrp.h ...103

Enumerations in asrp.h ..111

Functions in asrp.h ..113

asrv.h ..123

Functions in asrv.h ..123

cfg.h ...133

Data types in cfg.h ..133

Functions in cfg.h ...134

mod_types.h ..166

Automatic Speech Recognition Developer's Guide

Definitions in mod_types.h ...166

Data types in mod_types.h ...166

Enumerations in mod_types.h ...185

Functions in mod_types.h ..186

protos.h ...189

Functions in protos.h ...189

slot-factory.h ..192

Definitions in slot-factory.h ...192

Data types in slot-factory.h ...192

Functions in slot-factory.h ..195

terminals.h ..202

types.h ..203

Definitions in types.h ...203

Data types in types.h ...204

Enumerations in types.h ...212

Functions in types.h ..218

Table of Contents

About This Guide

This guide describes the Automatic Speech Recognition (ASR) subsystem. The ASR

subsystem provides end-to-end handling of spoken commands, utilizing a

module-based, extensible architecture.

This guide is intended for developers who will be modifying and extending the ASR

subsystem of the QNX CAR platform.

The following table may help you find information quickly:

Go to:To find out about:

Automatic Speech Recognition (p. 9)The architecture and process control flow

of the ASR subsystem

Extending ASR (p. 13)How to extend the ASR subsystem

Anatomy of a module (p. 14)Common parts of a module

Conversation modules (p. 19)Details on the conversation modules

Adding a conversation module (p. 31)How to add a conversation module

API Reference (p. 35)Functions, data types, structures, etc.

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Automatic Speech Recognition

The ASR subsystem (io-asr) offers complete speech-recognition services and supports

Nuance VoCon Hybrid 4.4 for speech-to-text (STT) and text-to-speech (TTS) conversion.

In addition, a reference implementation using AT&T Watson can help guide you in

integrating the ASR subsystem with other recognition providers.

To use VoCon, you must have a separate licensing agreement and NDA with

Nuance.

ASR provides speech-recognition services in the following areas:

• search—launch an application, get weather information, get directions or search

for points of interest

• multimedia—play tracks by artist, album, genre, or song title, and control playback

(pause, previous track, next track, and so on).

• voice dialing—by contact name or by number (requires a connected Bluetooth

device)

The io-asr service

The ASR service is referred to as io-asr throughout this guide. However, io-asr

is a shorthand term for the actual service that runs. The name of the service depends

on which recognizer is being used. The actual service is io-asr-recognizer_name,

for example, io-asr-vocon.

Modules

ASR uses modules to perform the various functions that provide end-to-end handling

of spoken commands. It doesn't handle speech by itself; it passes information between

modules so that they can perform the various stages of recognizing and taking action

on spoken commands. The modules interact with io-asr, not directly with each

other.

The ASR subsystem has four types of modules:

• prompt—requests information from the user. Prompts can be audio (spoken

directions or another sound such as a beep or a bell) or visual (for example, text

written to a portion of the display, a prompt screen with various options, or some

other visual cue such as a change of icon or color).

• audio—listens for commands and captures audio from the microphone (capture

module), or plays audio back to the user (file module).

Copyright © 2014, QNX Software Systems Limited 9

• recognition—converts speech to text. After the audio module has captured a

command (called an "utterance"), ASR instructs the recognition module to convert

the captured audio command to a text string that can be passed to a converstaion

module.

• conversation—interprets the text command and takes the appropriate action. There

are conversation modules for three types of commands: search, multimedia, voice

dialing. Each of these conversation modules has its own configuration that

determines the grammar used to interpret the command. Once a command is

successfully interpreted, the conversation module invokes the subsystem required

and passes it the information it needs to complete the request. Often the required

action is invoking another ASR pass to get more information from the user.

ASR startup

When the target system boots, System Launch and Monitor (SLM) starts ASR and

passes it the path to the configuration file (${QNX_TARGET}/etc/asr-car.cfg).

ASR begins to run as a daemon, reads the configuration file, and loads it into memory.

It then loads the modules as specified by the configuration file by calling dlopen() for

the associated DLLs. Each module has a constructor function that registers it with

ASR by calling the module's connect function. The module's constructor function calls

one of the following, depending on what type of module it is:

• asra_connect() (p. 56) for an audio module

• asrm_connect() (p. 68) for a conversation module

• asr_connect() (p. 186) for a recognition module

• asrp_connect() (p. 114) for a prompt module

ASR then invokes each registered module's initialize callback function, which initializes

any private or module-specific data. At this point, ASR is ready to handle voice

commands.

PPS integration

ASR uses PPS to communicate with the HMI. See /pps/services/asr/control

in the PPS Objects Reference for more information.

10 Copyright © 2014, QNX Software Systems Limited

Automatic Speech Recognition

Process control flow

ASR operates in a cyclical fashion, performing the same sequence of operations as

often as required to complete the user's request. Each cycle of these operations is

referred to as a recognition turn and is illustrated in the following diagram:

Prompt module

Recognition module

capture

search

2. Request audio
command

car_media

4. Request speech to
text conversion

5. Return decoded
text (result)

1. Prompt user

io-asr

6. Determine context and
initiate requested action

file

3. Return audio
buffer

dialer

3rd-party modules

Conversation
modules

Audio modules

7. Confirm action is
complete or request
more info

8. Request more
info

ASR's control flow works as follows:

1. ASR is triggered by the prompt module, which monitors the system for events (a

UI button press or a PPS update, for example) and then starts a recognition turn

by prompting the user for a command.

2. After the prompt is rendered, ASR passes control to the audio capture module to

capture the user's spoken command. On a successful capture, control passes to

the recognition module. If the command capture isn't successful, control passes

back to the prompt module to retry.

3. The recognition module converts the audio command to a text string and assigns

the result a level of confidence to indicate how well the command was "understood"

by the recognizer. Depending on the configuration, if the confidence level isn't

high enough, ASR will prompt the user again.

4. When a successful result is available, ASR passes control to the conversation

modules. The conversation modules must first determine the context of the

command (e.g., search, multimedia, or phone). The context determines which

conversation module takes over to complete the command. When a context is

determined, the associated conversation module is "exclusive." That is, it's the only

conversation module that will handle results until this command is fulfilled. At this

point, the exclusive module either completes the action or triggers another

recognition turn to have the user prompted again for more information. This process

Copyright © 2014, QNX Software Systems Limited 11

Process control flow

continues until the action is completed. The conversation module then removes

its exclusive status so that a fresh recognition turn can proceed.

12 Copyright © 2014, QNX Software Systems Limited

Automatic Speech Recognition

Chapter 2
Extending ASR

ASR offers complete voice-control services for search, media, and voice dialing, but

there may be circumstances where you want to modify functionality in existing modules

or add additional modules. The most common module to extend or add is the

conversation module. This allows additional functionality to be triggered by voice

commands without changing the way the ASR subsystem operates.

If you want to use a different recognizer, you'll need to reimplement the

recognizer modules. You might also need to modify or reimplement the prompt

modules. See the AT&T Watson reference implementation for guidance or

contact QNX technical support.

Copyright © 2014, QNX Software Systems Limited 13

Anatomy of a module

While the internal implementation of the modules is quite different, they all share

common features. Each type of module has an interface that defines how it interacts

with io-asr:

• asr_recognizer_if_t for the recognizer module

• asrp_module_interface_t (p. 107) for the prompt module

• asra_module_interface_t (p. 185) for the audio modules

• asr_conversation_if_t (p. 171) for the conversation modules

Each interface includes some or all of the following members:

• name (all modules)—the name of the module

• version (all modules)—the version of the of libasr-core that the module was

built against. The io-asr service checks this version number to ensure that the

module is compatible with the current system.

• init() (all modules)—a callback function that performs whatever initialization tasks

are required to get the module ready to handle requests from io-asr

• start() (prompt, audio, recognizer)—a callback function that causes the module to

begin performing its particular operation

• stop() (all modules)—a callback function that causes the module to stop performing

its particular operation

• step() (prompt, recognizer), on_asr_step() (conversation)— callback functions that

perform actions depending on the current step (asr_step_t) of the recognizer

All modules provide an initialization function that io-asr invokes when the module

is loaded. In addition to setting up module-specific data, the initialization function

also loads the configuration tree and extracts the confidence threshold that's used to

select speech-to-text results from the recognizer. The confidence threshold value is

set globally per instance of the io-asr subsystem. This threshold is used frequently;

saving it to memory speeds up access since the module won't have to walk the

configuration tree each time the threshold is required.

Many of the callback functions in the module interfaces take private module-specific

data as an argument (init(), destroy(), start(), stop()). This argument is a void pointer

that's usually named module_data. ASR doesn't access this data, so its structure can

be whatever is required by the individual module; two modules of the same type might

use different module-specific data. This module-specific data structure can be passed

to io-asr via the module's connect() (p. 10) function. ASR can then pass it as an

argument to the module's callback functions.

14 Copyright © 2014, QNX Software Systems Limited

Extending ASR

Prompt module

The prompt module is responsible for triggering ASR. It has a separate thread that

monitors the PPS control object for changes and then triggers a recognition turn based

on those changes. On an initial prompt (a new recognition turn), the prompt module

plays a voice prompt that asks the user for a command. On subsequent turns within

the same session, the prompts may take different forms depending on what's required.

For example, if the command wasn't understood, a voice prompt asks for the command

to be repeated. For media playback, there may be a spoken confirmation as well as a

visual change to the HMI to indicate that playback is starting.

The prompts that are rendered for various situtuations are defined by the prompt

configuration files, *prompts.cfg. These files reside at various locations in the ASR

subsystem depending on their purpose.

The prompts to be rendered for the various conversation modules are defined in

car-prompts.cfg or prompts.cfg files in the

${QNX_TARGET}/opt/asr/conversation/locale/module directory. For

example, the English prompts for media playback are in the

${QNX_TARGET}/opt/asr/conversation/en-US/car-media directory

The prompt module is tightly integrated with the HMI and the audio drivers. You should

be able to adjust the prompt module to suit your needs just by modifying the

configuration files. If you need more extensive changes, please contact QNX technical

support.

Copyright © 2014, QNX Software Systems Limited 15

Prompt module

Audio modules

There are two audio modules:

• capture, which acquires the user's spoken commands

• file, which plays back audio files (usually verbal prompts from the ASR system)

The capture audio module acquires audio from the microphone via libasound.

The captured audio is placed in a buffer that io-asr passes to the recognition module

to be converted to text.

The file audio module plays back audio from a WAV file. The audio module sets up

the required audio configuration, and then passes the audio file to the prompt module.

The prompt module invokes Audio Manager to perform the actual playback of the file.

The audio modules are tightly integrated with the audio drivers, Audio Manager, and

libasound. You shouldn't modify the audio modules. If you require changes, please

contact QNX technical support.

16 Copyright © 2014, QNX Software Systems Limited

Extending ASR

Recognition module

The recognition module converts a spoken command (i.e., an utterance) to text. It

collects the audio sample, passes it to the vendor's text-to-speech service for

processing, and converts the vendor-specific result data to the format required by

ASR. The recognition module returns a dictation result, which is strictly a speech-to-text

conversion. The result is returned in the asr_result (p. 205) type).

The io-asr service passes the dictation result to the Natural Language Adaptation

Layer (NLAL), which extracts intent information (asr_intent (p. 204)). This intent

data is added to the original result structure. The NLAL uses BNF grammars provided

with the conversation modules to analyze the dictation result to extract its meaning

and produce intent results.

In some cases, the vendor's text-to-speech service can extract salient information from

the utterance to construct an intent result. However, the dictation result must always

be included so that ASR can perform its own natural language processing on the

utterance.

For example, the utterance "search media for Hero" could result in the following

dictation result from the recognizer:

• result type: Dictation

• utterance: "search media for Hero"

• start rule: search#media-search

• confidence: xxx (a value in the range 0-1000, where 1000 is 100% confidence)

The NLAL would then analyze this dictation result to create the following intent result:

• result type: Intent

• utterance: "search media for Hero"

• start rule: media-search

• confidence: xxx

• intent entries: 2

• field: "search-type", value: "media"

• field: "search-term", value: "Hero"

The final recognition result (with intent information) is passed to the conversation

modules to be interpreted and acted upon. The intent fields are vital for the

conversation modules—the conversation can't take place if the system can't understand

the meaning of an utterance.

Copyright © 2014, QNX Software Systems Limited 17

Recognition module

The recognition module is tightly integrated with the third-party ASR vendor. If you

require changes or want to use a different vendor, see the AT&T Watson reference

application for guidance or contact QNX technical support.

18 Copyright © 2014, QNX Software Systems Limited

Extending ASR

Conversation modules

The conversation modules interpret the recognized speech result and take the

appropriate action. There are many conversation modules; each handles a specific

type of result. When a new intent result is available, io-asr passes it to all the

conversation modules to provide a rating.

ASR selects the module that provides the highest rating and passes it the current

result for processing. The module can optionally set itself as exclusive by calling the

asrm_set_exclusive() (p. 92) function so that it will receive all future results in the

current speech session (i.e., io-asr won't evaluate the ratings of other conversation

modules). The module releases its exclusive status when ASR transitions to the

ASR_STEP_SESSION_CLOSED state.

Each module has one or more configuration files that describe the grammar it uses to

interpret the recognition result, and then maps the outcomes to specific actions (for

example, play a named track, dial a contact phone number, and so on). The modules

load these configuration files into memory as configuration trees (cfg_item_t (p.

134)).

The configuration files are found in the asr/conversation/locale/context

directory. For example, the English configuration files for the search module are

found in the asr/conversation/en-US/search directory.

All conversation modules must implement the select_result() callback function of the

conversation module interface, asr_conversation_if (p. 168). This callback

evaluates the results obtained from the recognizer and selects the result that's most

relevant. It assigns a score to the result, allowing io-asr to determine which module

should be used to handle the result. This function requires three arguments:

• result_set—the set of results that were obtained for a given speech utterance. The

utterance is translated into one or more tagged string sequences and collected

within this argument.

• module_data—the private module data associated with the car-media module.

• selected_result—a pointer to a buffer that contains the address of the selected

result (from the results set). This argument is updated only in the event that the

module finds a relevant result in the provided result set.

If a relevant result is found, the function assigns it to the selected_result argument

and then returns the module's confidence that the selected result is relevant. If a

competing module matches a result with a higher confidence, io-asr selects that

module rather than the current one.

If this function doesn't select a result, it returns a confidence score of zero.

Copyright © 2014, QNX Software Systems Limited 19

Conversation modules

It's possible that the command uttered by the user only approximately matches a

known command. For this reason, ASR assigns a confidence score to each of the

pending actions. This allows the module to request clarification from the user when

the uncertainty of the command is too high (i.e., the confidence score is less than the

confidence threshold). In this case, the module ignores the pending action and io-asr

prompts the user to repeat their last command.

Instead of using the globally set confidence threshold to determine the relevance of

a result, the conversation module may optionally use a per-module confidence

threshold.

The conversation modules can output log information to the system logger at varying

verbosity levels. The modules use the asrm_slog() (p. 95) function to output log

information, allowing the verbosity to be set via the ASR configuration file. In addition,

if you compile a module with the DEBUG preprocessor symbol defined, the logging

information will include the filename, line number, and function name for all messages

issued by the module.

The search module

The search module allows the user to perform various searches and to launch other

applications.

The search module, like all other modules, provides an initialization callback function.

After io-asr has loaded all modules, it invokes the initialization callback to set up

the private data structures managed by the module.

The initialization callback loads the search-specific configuration tree to make it

available to the module. This configuration data is assumed to be in the

module/search path of the global configuration tree. The search module has two

locale-specific configuration files that are used to customize its behavior:

• car-control.cfg—defines text keys that are used to tag terminals in a

recognition result. You can add more keys to this section to trigger search commands

with custom keywords.

• car-prompts.cfg—defines the locale-specific prompts that are used by the

search module.

When io-asr shuts down, it releases all modules that it has dynamically loaded. The

search module provides the destroy() callback, which releases resources allocated

during the initialization phase before the module is deleted from the ASR subsystem.

Actions

The search conversation module can:

• query the time

• query the date

20 Copyright © 2014, QNX Software Systems Limited

Extending ASR

• launch or close an application

• get the current weather in a specified location

• get directions to a point of interest (POI) or address

• search for media or a POI

In addition to these actions, the search module also provides a general help prompt

that tells the user what voice commands are supported.

Conversation flow

The search module can handle a number of different states that update the result

action (result_action_e (p. 216)). If a search command is successful, the result

action is set to ASR_RECOGNITION_COMPLETE. If insufficient information was

provided in the utterance, the result action is set to ASR_RECOGNITION_RESTART

to reprompt the user. The search module's states are as follows:

• IDLE—the default state of the search module. From this state, the module can

issue search instructions. There is no change to the result action.

• MEDIA_SEARCH, RADIO, AUDIO, and VIDEO—invoke the mm-player service to

complete the action.

• SEARCH—an intermediate state in the process of handling a media or POI search

(while the domain of the search is being determined).

• POI and NAV—invoke the navigation service to get directions.

• WEATHER—invoke the weather application to get the current weather for a location.

• HELP—play the help prompt to the user.

• CANCEL—abort the last spoken command. The result action is set to

ASR_RECOGNITION_CANCEL.

• LAUNCH—launch the specified application. The search module maintains a

mutex-protected list of applications that it keeps current.

• CLOSE—close the specified application.

• TIME—get the time of day from the system.

• DATE—get the date from the system.

ASR state transitions

The search module keeps track of the current ASR state. This state affects what

actions are taken by the module when a callback function is invoked (the result handler

in particular). To keep track of the current ASR step, the search module defines a

step() callback function that io-asr invokes to inform the module of the current

state in the speech-recognition process. This function takes the current step ID and

a pointer to the module data as arguments.

The step() function handles the following transitions:

Copyright © 2014, QNX Software Systems Limited 21

Conversation modules

• ASR_STEP_LOCALE_CHANGED—the configuration of the module may need to

change. The step() function ensures that the correct locale configuration information

is associated with the module's data. Localized data includes grammar configuration

and prompt data.

• ASR_STEP_SESSION_OPENED—places the search module into the IDLE state

and makes these grammar configuration sections active: base, base intents, and

common.

• ASR_STEP_SESSION_CLOSED—removes the search module's status as the

exclusive recipient of results.

• ASR_STEP_RECOGNITION_BEGIN—ensures that the correct configuration section

is set as active when a speech-recognition session is started. If the module is not

in the idle state, the confirmation section is set as active; otherwise, the base

section is set as active.

• ASR_STEP_PRE_AUDIO_CAPTURE—places the module into the idle state.

• ASR_STEP_RECOGNITION_END—unlocks the application list mutex.

The step() function ignores all other state transitions.

Result handling

The on_result() callback function of the conversation module interface,

asr_conversation_if (p. 168), processes speech-to-text results that the

select_result() callback function has determined are relevant to the current module.

The on_result() function is responsible for handling the selected result according to

the conversation flow, as described earlier in this section. If the speech-to-text result

doesn't provide enough information to complete the action, the on_result() function

forces a restart of the speech-recognition routine to obtain further information.

Grammars

The search module provides two types of grammars that define its behaviour. One

type of grammar affects how the intents of an utterance are extracted from a

speech-to-text result. The other type is supplied to a third-party recognizer to build a

context for performing the actual speech-to-text conversion.

The mapping from speech to search actions is defined by a grammar that is specified

in a localized configuration file. This file is loaded by the ASR subsystem at execution

time and parsed into a configuration tree. The subtree that is relevant to the search

module is then copied to its private data structure.

The search module also provides localized BNF grammars that are used to compile

recognizer contexts that control speech-to-text transformations. These grammars

describe the key phrases that can be used to interact with the search module and

that provide a list of applications that are present on the system. The default context

grammars are defined in <recognizer>/en-US/search/car-search.bnf and

<recognizer>/en-US/search/car-applications.bnf.

22 Copyright © 2014, QNX Software Systems Limited

Extending ASR

The car-media module

The car-media module uses one of two multimedia services to perform media

operations: mm-player or mm-control. From the user's perspective, these services

behave exactly the same, but what happens behind the scenes is different, so there

are separate plugins. Each of the plugins provides different private data, aggregated

into the main car-media data structure. These distinct plugins can be loaded

exclusively to provide multimedia voice support, but they both can't be loaded

simultaneously.

Each media plugin of the car-media module provides an initialization function,

which is invoked when the module is registered with the ASR system. Similarly, each

plugin provides a tear-down function that ensures that any allocated resources are

released when the module is unloaded. This function is called by the destroy() callback

function.

The mm-player plugin

The mm-player back end of the car-mediamodule relies on a C API to communicate

with the media service. This requires the plugin to open a handle to the mm-player

service. For more information about the mm-player API, see the Multimedia Player

Developer's Guide

The mm-control plugin

The mm-control plugin of the car-media module communicates with the media

service using the control and status PPS objects for mm-control.

The mm-control service is being deprecated in favour of

mm-player.

The control object provides an access point for clients to publish commands and

messages to the mm-control service. The mm-control service publishes status

information about the media, such as the ID of current track and the playback speed,

to the status object.

The car-media module defines a helper function that parses the data from the PPS

objects.

For more information about the mm-control service, see the Multimedia Controller

Configuration Guide. For information specific to the mm-control PPS objects, see

the /pps/services/mm-control/control and

/pps/services/mm-control/<playername>/status entries of the PPS Objects

Reference.

Copyright © 2014, QNX Software Systems Limited 23

Conversation modules

Actions

The car-media module defines a number of actions that can be initiated via voice

control. These are grouped into high-level workflows that aren't directly tied to specific

commands words or utterances, making the module easily adaptable to multilingual

environments. Each action ID is associated with a rule string. To enable the car-media

module for a particular language environment, a locale-specific grammar simply

associates a grammar entry to the rule string corresponding to the correct action ID.

The actions supported by the car-media modules are:

• Media playback control—allows the playback of media to be controlled by voice.

The ID and rule string associated with this particular action are as follows:

[MEDIA_CTRL] = "media-ctrl",

The media-ctrl action is further subdivided into actions that express specific

controls being executed by the module as follows:

[PAUSE] = 0, /* media-ctrl */
[RESUME] = 0, /* media-ctrl */
[PREVIOUS] = 0, /* media-ctrl */
[NEXT] = 0, /* media-ctrl */

• Media search and tracksession generation—allows the user to create a new track

session (populated with media files matching a particular search string and type)

and to start playing the tracks in order. The ID and rule string associated with this

particular action are as follows:

[PLAY] = "media-playback"

The media search action is further subdivided into actions that narrow the scope

of the search into categories:

[ALBUM_PLAYBACK] = "album-playback"
[SONG_PLAYBACK] = "song-playback"
[ARTIST_PLAYBACK] = "artist-playback"

Conversation flow

The action IDs described previously are used internally by the module to specify the

current state of the conversation flow. Two states must be accounted for:

• Current—the state following the car-media module's turn in the conversation.

In other words, this is the state immediately after the module has responded to

the user (or more accurately, produced prompt information for one of the prompt

modules). Initially, the module's conversation state is IDLE.

• Pending—the state of the conversation after the user's utterance is considered.

The utterance constitutes a command that may need to be executed by the module.

When the command is executed, the pending state becomes the current state.

24 Copyright © 2014, QNX Software Systems Limited

Extending ASR

ASR state transitions

Like the search module, the car-media model keeps track of the current ASR state.

For details, see ASR state transitions (p. 21) in the section “The search module”.

The step() function handles the following transitions:

• ASR_STEP_LOCALE_CHANGED—the configuration of the module may need to

change. The step() function ensures that the correct locale configuration information

is associated with the module's data. Localized data includes grammar configuration

and prompt data.

• ASR_STEP_SESSION_OPENED—places the car-media module into the IDLE

state and makes these grammar configuration sections active: base, base intents,

and common.

• ASR_STEP_SESSION_CLOSED—removes the car-media module's status as the

exclusive recipient of results.

Result handling

Like the search module, the car-media module uses the on_result() callback

function to process recognition results. For details, see Result handling (p. 22) in the

section “The search module”.

Grammars

Like the search module, the car-media module provides two grammars that define

its behavior (one for extracting intents and one for building a context for the third-party

recognizer). For details, see Grammars (p. 22) in the section “The search module”.

The car-media grammar can be separated into two high-level groups: control and

search. The control group involves all conversations that control the playback. The

search group involves all conversations that set up tracksessions based on specified

search terms and categories.

In addition, a default grammar for the media metadata list is provided. This grammar

defines the media-name slot as being a null feature (i.e. it will not be matched). The

context created by this grammar is replaced when new media is added to the system.

This context simply serves as a placeholder, allowing the car-media module to work

until a proper media data context is generated. This substitution is done at runtime

as described in the following section.

Updating the guest context

The car-media module defines several helper functions that are used to construct

an internal list of media data. The media metadata is obtained from internal databases

that are created when media sources are connected to the device.

The media metadata is constructed in three passes:

Copyright © 2014, QNX Software Systems Limited 25

Conversation modules

1. song titles

2. artist names

3. album names

These three passes are repeated once for each synchronized media source.

Synchronized media sources are listed by querying the mm-detect PPS status

object.

The media metadata list must be updated whenever a new media source is

synchronized. To facilitate this, the car-media module spawns a monitor thread that

listens to the mm-detect service to be notified when new media sources are connected

or synchronized.

The dialer module

The dialer module allows the user to initiate a phone call by speaking either the

number to dial or the name of a known contact. For voice dialing to work, the handsfree

phone (HFP) subsystem must be running and a mobile phone device must be paired.

If these conditions aren't met, the dialer conversation module will still work, but it

won't be possible to connect any calls.

Like all other modules, the dialer module provides an initialization callback function.

After io-asr has loaded all modules, it invokes the initialization callback to set up

the private data structures managed by the module.

The initialization callback loads the dialer-specific configuration tree to make it

available to the module. This configuration data is assumed to be in the

module/cardialer path of the global configuration tree. The dialer module has

two locale-specific configuration files that are used to customize its behavior:

• car-control.cfg—defines text keys that are used to tag terminals in a

recognition result. You can add more keys to this section to trigger dialing commands

with custom keywords.

• car-prompts.cfg—defines the locale-specific prompts that are used by the

dialer module.

Next, the initialization callback loads the result confidence threshold and opens a

connection to the PPS control object of the HFP subsystem. The URI of this control

object is configurable; the module obtains the location when it loads the configuration

data.

When io-asr shuts down, it releases all modules that it has dynamically loaded.

The dialer module provides the destroy() callback, which releases resources allocated

during the initialization phase and closes any open PPS connections before the module

is deleted from the ASR subsystem.

26 Copyright © 2014, QNX Software Systems Limited

Extending ASR

The HFP subsystem

The dialer module is responsible for issuing dial commands to the HFP subsystem

to initiate outgoing phone calls. Because it relies on the HFP subsytem, the dialer

module queries the /pps/services/bluetooth/services object to ensure the

system is available before issuing any commands. It issues dial commands via the

PPS handsfree control and status objects. For more information about these

objects, see the PPS Objects Reference.

Actions

The dialer conversation module can:

• dial a number

• call a named contact

• end an active call

• redial the last number called

In addition to these actions, an IDLE action is defined. This describes the system at

the beginning of a speech session. Most interactions with the dialer will be initiated

from this state.

Conversation flow

The dialer module has the following conversation states:

• IDLE—the default state of the dialer module. From this state, the dialer

module can accept dial, redial, or hangup instructions.

• DIAL—the dialer module expects a contact name or phone number to call via

the HFP subsystem. In this case, the module inspects the result to see if it matches

a number to dial. If the result doesn't correspond to a number, the dialer module

assumes a contact name and searches the contact database for matching

information.

• CONFIRM—the dialer module is ready to dial a number, but first issues a query

to the user to confirm whether to dial the number. If the answer is negative, then

the dialer goes back to the DIAL state, prompting the user to provide a number.

• UNDEFINED_ACTION—The dialer module received an unrecognized command.

This state ends the recognition session, setting the result action type

(asr_result_action_t (p. 218)) to ASR_RECOGNITION_UNKNOWN.

ASR state transitions

Like other conversation modules, the dialer module defines a step() callback function

to keep track of the current ASR state.

In addition, the dialer module's private data structure contains fields that specify

the number of digits in the phone number that have been confirmed as correct and

Copyright © 2014, QNX Software Systems Limited 27

Conversation modules

the number of digits that remain. A minimum number of confirmed digits are required

before a call can be dialed. The total number of digits in the phone number can be

obtained by taking the sum of confirmed digits and new digits.

The step() callback function handles the following state transitions:

• ASR_STEP_LOCALE_CHANGED—the configuration of the module may need to

change. The step() function ensures that the correct locale configuration information

is associated with the module's private data. Localized data includes grammar

configuration and prompt data.

• ASR_STEP_SESSION_OPENED—places the dialer module into the IDLE state

and sets the base configuration section as active.

• ASR_STEP_RECOGNITION_BEGIN—ensures that the correct configuration section

is set as active when a speech-recognition session is started. If the module isn't

in the idle state, the confirmation section is set as active; otherwise, the base

section is set as active.

• ASR_STEP_RECOGNITION_END—unlocks the phonebook mutex.

• ASR_STEP_SESSION_CLOSED—stops any dialing activity that is currently taking

place and removes the module's status as the exclusive recipient of speech

commands in the ASR subsystem. To allow the last number to be redialed, this

state doesn't clear the previously captured phone number.

The step() function ignores all other state transitions.

Result handling

The on_result() callback function of the conversation module interface,

asr_conversation_if (p. 168), handles speech results (utterances) for the digit

dialing context. This handler takes one of the following actions:

• initiate a phone call, via a paired Bluetooth handset, to a specified number

• confirm a number to call

• redial the number of any calls previously placed

• terminate a phone call (hang up)

When the utterance has been processed, the handler returns the ASR action

(asr_result_action_t (p. 218)) to perform next. This action indicates whether

recognition is complete (the call has been dialed), recognition needs to be restarted

(to gather more information and continue the conversation), or recognition should be

aborted (terminate the conversation without invoking any functions).

The result-handling callback sets the internal state of the dialer module based on

the intents of the utterances received and processed by the recognizer. To support

incomplete data from an utterance—for example, if a dial request was made without

specifying the number, requiring ASR to prompt the user for the number to dial—a

28 Copyright © 2014, QNX Software Systems Limited

Extending ASR

member of the dialer module's private data structure keeps track of the internal

state between invocations of callbacks.

Grammars

The conversation flow understood by the dialer module is defined in the control

configuration file by a BNF grammar that expresses the intents of the spoken

utterances. The ASR subsystem uses this grammer to extract the intents from the

utterance. It adds this information as payload data to the result structure for the NLP

component of the conversation pipeline to use. The BNF grammar for the dialer

module is defined in car-control.cfg.

In addition to the NLAL grammar used by the conversation pipeline, the dialer

module also defines a BNF grammar that can be used to create a context for the

third-party recognizer module. The default dialing context is defined in the

recognizer/en-US/dialer/car-dialer.bnf directory.

Finally, a default grammar for the contact list is generated. This grammar defines the

contact-name slot as being a null feature. The context created by this grammar will

be replaced when a phonebook is actually connected to the host device. This context

simply serves as a placeholder, allowing the dialer module to work until the contact

list context is generated. This substitution is done at runtime as described in the

following section.

Updating the guest context

The dialer module defines several helper functions that are used to construct an

internal representation of the contact list used to build a guest context for voice dialing.

The names of all the contacts are first obtained from the phonebook database and

added to an ordered list, removing all duplicate entries.

The contact list associated with the dialer module is constructed a little differently

than one might expect. Normally, given names are paired with family names. However,

in this case, given names and family names are included as separate entries in the

contact list. This will allow the constructed context to match on utterances of given

name or family name only.

The contact list must be updated whenever there is a change to the phonebook

database. To facilitate this, the dialer module spawns a monitor thread that listens

for changes to the phonebook and updates the contact name list accordingly.

Receive-list database table

The dialer conversation module uses a receive list database table in the phonebook

database to track contacts that are accumulated by the call-by-name action. This

table (named asr-matched-contacts) tracks the contact names and the confidence

with which those names correspond to a specified match string. The table can be

Copyright © 2014, QNX Software Systems Limited 29

Conversation modules

easily published to other applications that can access the database (e.g., a GUI

application). However, this approach assumes that the database facilities are available

and that an appropriate table for storing the data exists. When the module queries the

contacts database table, it retrieves the contact ID that is associated with the contact.

This allows the module to insert a new row into the table for each match.

30 Copyright © 2014, QNX Software Systems Limited

Extending ASR

Adding a conversation module

To add a new conversation module, create a new instance of the conversation module

interface (asr_conversation_if (p. 168)), which provides the communication

mechanism between your new module and ASR. You must implement the following

callback functions, which ASR invokes via the conversation module interface:

• init()—initializes the module; invoked by asr_module_initialize().

• select_result()—allows modules to accept a recognition result. ASR calls

select_result() for the current exclusive module if there is one; otherwise, it makes

the call for all active registered modules. Each module examines the list of results

containing the hypotheses from the current recognition to determine the one it can

successfully take action on, and then returns its selection via a result pointer. If

there's no exclusive module, the selected result with the highest confidence level

is used.

• on_result()—handles the selected result. The module takes the appropriate action

on the result (for example, invoking an application, dialing a phone number, or

reprompting) and returns the next action ASR should take (see asr_result_action_t

(p. 218) for the list of actions).

ASR calls on_result() for a module only if no other module has a result with a higher

confidence level. ASR selects the module that provides the highest rating and

sends it the current result for processing. The module can optionally set itself as

exclusive by calling the asrm_set_exclusive() (p. 92) function so that it will receive

all future results in the current speech session (i.e., io-asr won't evaluate the

ratings of other conversation modules). The module releases its exclusive status

when ASR transitions to the ASR_STEP_SESSION_CLOSED state.

• stop()—for interrupting an action. This function provides a mechanism to interrupt

an action and to allow ASR to recover gracefully.

Modules are loaded as DLLs at runtime. You must define a constructor function

(designated with the ((constructor)) compiler attribute) that is called when ASR

loads your module. This constructor function must call asrm_connect() (p. 68) to

connect to io-asr and obtain your module's handle. The following code fragment

illustrates this procedure for the dialer module:

typedef struct CarDialer_data_s {
 asr_module_hdl_t* handle ;
 ...
}CarDialer_data _dialer_data ;

static const asr_conversation_if_t
CarDialer_interface = {
 .name = "dialer",
 .asr_version = ASR_VERSION,
 .init = CarDialer_init,
 .destroy = CarDialer_destroy,

Copyright © 2014, QNX Software Systems Limited 31

Adding a conversation module

 .on_asr_step = CarDialer_step,
 .select_result = CarDialer_selectResult,
 .on_result = CarDialer_onResult,
} ;

__attribute__((constructor))
static void
CarDialer_register(void)
{
 CarDialer_data* self = &_dialer_data ;
 asr_module_hdl_t* module_handle ;

 memset(self, 0, sizeof(*self)) ;
 module_handle = asrm_connect(&CarDialer_interface, sizeof(CarDialer_interface), self) ;
 if (self && module_handle) {
 self->handle = module_handle ;
}
}

In this example, the self data pointer is associated with the module. The

io-asr service passes this pointer to all the module's callbacks as void*

arguments. The pointer is then cast to the proper structure type to provide

access to the module-specific data.

When ASR unloads the conversation module, it calls the module's destroy() callback

function. This function should clean up any resources that were allocated in the init()

function.

Specifying NLAL grammars

Depending on the functionality the new module is supporting, you may also need to

create a new configuration file for the conversation. The configuration file defines the

grammar that is used to interpret the text and to allow the module to take the

appropriate action.

In the configuration file for each conversation module

(${QNX_TARGET}/opt/asr/conversation/locale/module/car-control.cfg),

define a section with the following syntax:

section-name = NLAL {
 }

This specifies section-name as the top-level grammar rule for the module. Each

line of this configuration section describes an alternate grammar that the NLAL uses

to match an utterance. You can define any number of these sections, and each section

can contain any number of entries. In the code for the new conversation module, you

call the asrm_set_active_sections() (p. 91) function to set the grammar that the module

uses. The top-level rules can be composed of subrules. You specify a subrule with

angled brackets. For example:

time-query = {
 'what is the current time'
}

keys = NLAL {

32 Copyright © 2014, QNX Software Systems Limited

Extending ASR

 <time-query>
}

In this configuration, the <time-query> rule is expanded to the contents of the

time-query subrule, which is composed of string literals. Therefore, the only

utterance that will match this rule is the sentence “what is the current time”. Note

that you don't use the NLAL attribute for subrules; it's only required for the top-level

rules.

You can also add actions to the rule. For example, the keys section could be extended

as follows:

keys = NLAL {
 <time-query:id(rule, time)>
}

This has the effect that whenever an utterance matches the <time-query> rule, an

intent with the field name rule and the value time will be added to the result

structure (asr_result (p. 205)):

intents = {
 rule = time
}

If the value is omitted from the id command, the matching text is set as the field

value. For example:

search-query = {
 'search for '<...:id(search-term)>
}

keys = NLAL {
 <search-query:id(rule,search)>
}

This rule matches utterances of the form “search for ...”. The special rule <...> is

a catch-all that matches anything. If the NLAL processes the utterance “Search for

Starbucks” using this rule, the following intent fields will be added to the result

structure:

intents = {
 rule = search
 search-term = Starbucks
}

It's also possible to optionally match items in the grammar by enclosing them in square

brackets. The rule:

search-query = {
 search ['internet '] 'for ' <...:id(search-term)> }

matches the utterances:

• “Search for Starbucks”

• “Search internet for Starbucks”

Copyright © 2014, QNX Software Systems Limited 33

Adding a conversation module

Note that spaces must be quoted and must be described explicitly in the rule. The

following rule is incorrect:

search-query = {
 search [internet] for <...:id(search-term)> }

This rule won't match either of the previously described utterances. However, it will

match the following:

• “searchinternetforStarbucks”

• “searchforStarbucks”

Items enclosed in parentheses and separated by pipe characters specify alternative

matches. For example, the rule:

search-query = {
 'search ' (internet | media) ' for ' <...:id(search-term)> }

matches the utterances:

• “search internet for Weezer”

• “search media for Weezer”

• “search for Weezer”

This has the same effect as defining a subrule with a different match grammar on

each line:

search-type = {
 internet
 media
}

search-query = {
 'search ' <search-time> ' for ' <...:id(search-term)> }

You can add the special help-url item to the top-level NLAL section rule to define

a prompt string for ASR to use to respond to user help requests. If the user utters one

of the help commands (defined in the common configuration file,

${QNX_TARGET}/opt/asr/conversation/locale/common/car-control.cfg)

while this section is active, ASR passes the value of the help-url to the prompt

module:

keys = NLAL {
 <search-query:id(rule, search)>
 help-url = tts://"Describe the commands supported by this grammar"
}

In this example, the if the user requests help while the keys section is active, ASR

passes the the URL tts://"Describe the commands supported by this

grammar" to the prompt module.

34 Copyright © 2014, QNX Software Systems Limited

Extending ASR

Chapter 3
API Reference

The following table summarizes the header files that provide the ASR API:

DescriptionHeader file

Provides an interface to the host system's logging

facilities.

asr.h

Provides functions and data types for capturing and

playing back audio.

asra.h

Provides functions and data types for module

management.

asrm.h

Provides functions and data types for rendering prompts.asrp.h

Provides functions to interact with vendor-supplied

modules.

asrv.h

Contains data types and functions for building and

searching a configuration tree.

cfg.h

Provides data type definitions and functions for the

audio, recognition, and conversation modules.

mod_types.h

Provides functions for logging.protos.h

Provides functions and data types for interacting with

the SlotFactory object, which is used to manage

recognition results.

slot-factory.h

For internal use.terminals.h

Provides data types for the control flow of speech

recognition. These data types include result

classifications, state enumerations, and error codes.

types.h

Copyright © 2014, QNX Software Systems Limited 35

asr.h

Functions and data types for automatic speech recognition.

The asr.h header file provides functions and data types for interacting with io-asr.

Definitions in asr.h

Preprocessor macro definitions for the asr.h header file in the libasr library.

Definitions:

#define ASR_RESPONSE_PENDING 0x8000

A flag to indicate that a recognition response is pending.

Library:

libasr

Data types in asr.h

asr_context_hdl

The context handle.

Synopsis:

struct asr_context_hdl {
 int dummy ;
};

Data:

int dummy

A dummy field that can be redeclared depending on vendor requirements.

Library:

libasr

Description:

This opaque data type represents the context handle, which is an opaque definition

of a local recognizer context. The context is used to add new words to a recognizer,

increasing the chance that it will be able to find correct matches for more utterances.

The required structure of this data type may vary by vendor.

36 Copyright © 2014, QNX Software Systems Limited

API Reference

asr_global_data_t

Information about the recognizer module.

Synopsis:

#include "asr/asr.h"

typedef struct asr_global_data asr_global_data_t;

Library:

libasr

Description:

This opaque data type carries global information about the recognizer module. This

information may vary by vendor.

asr_instance_data_t

Identifying information about an instance of the recognition service.

Synopsis:

#include "asr/asr.h"

typedef struct asr_instance_data asr_instance_data_t;

Library:

libasr

Description:

This opaque data type carries identifying information about an instance of the speech

recognition service. This information may vary by vendor.

Functions in asr.h

asr_cancel()

Cancel a recognition request.

Synopsis:

#include "asr/asr.h"

int asr_cancel()

Copyright © 2014, QNX Software Systems Limited 37

asr.h

Arguments:

Library:

libasr

Description:

The asr_cancel() function invokes the stop() callback function defined in the recognizer

interface, asr_recognizer_if, and sets the hold count to 0. The recognizer stops audio

acquisition and stops processing results.

Returns:

0 Success.

-1 An error occurred; errno is set.

asr_close_global()

Close a connection to the recognizer module.

Synopsis:

#include "asr/asr.h"

int asr_close_global(void *asr_hdl, asr_global_data_t *data)

Arguments:

asr_hdl

The handle to close.

data

Global data to be passed to or received from io-asr.

Library:

libasr

Description:

The asr_close_global() closes a connection to the recognizer module. The operations

performed by the asr_close_global() function and the contents of the asr_global_da

ta_t structure may vary by vendor.

38 Copyright © 2014, QNX Software Systems Limited

API Reference

Returns:

0 Success.

-1 An error occurred.

asr_close_instance()

Close an instance of the recognizer module.

Synopsis:

#include "asr/asr.h"

int asr_close_instance(void *asr_hdl, asr_instance_data_t *data)

Arguments:

asr_hdl

The recognizer handle.

data

The instance data to be freed.

Library:

libasr

Description:

The asr_close_instance() function closes the specified instance of the recognizer and

frees the memory consumed by data. The operations performed by the

asr_close_instance() function and the contents of the asr_instance_data_t

structure may vary by vendor.

Returns:

0 on success; an error code on error.

asr_context_add_entries()

Add entries to the specified context.

Synopsis:

#include "asr/asr.h"

int asr_context_add_entries(asr_context_hdl_t *chdl, cfg_item_t *cfg, const
char *slot_identifier, asr_slot_entry_t *slot_entry, int num_slot_entries)

Copyright © 2014, QNX Software Systems Limited 39

asr.h

Arguments:

chdl

A pointer to the context handle.

cfg

A pointer to the configuration associated with the context.

slot_identifier

A pointer to the slot identifier (the position of the new entry).

slot_entry

An array of slot entries.

num_slot_entries

The size of the array of slot entries.

Library:

libasr

Description:

The asr_context_add_entries() function invokes the context_add_entries() callback

function defined in the recognizer interface, asr_recognizer_if.

Returns:

0 Success.

<0 An error occurred.

asr_context_create()

Create a conversation context.

Synopsis:

#include "asr/asr.h"

asr_context_hdl_t* asr_context_create(cfg_item_t *cfg)

Arguments:

40 Copyright © 2014, QNX Software Systems Limited

API Reference

cfg

A pointer to the configuration item associated with the context.

Library:

libasr

Description:

The asr_context_create() function invokes the context_create() callback function

defined in the recognizer interface, asr_recognizer_if.

Returns:

A pointer to the new context handle on success; NULL on error.

asr_context_destroy()

Destroy a conversation context.

Synopsis:

#include "asr/asr.h"

int asr_context_destroy(asr_context_hdl_t *chdl)

Arguments:

chdl

A pointer to the context handle.

Library:

libasr

Description:

The asr_context_create() function invokes the context_create() callback function

defined in the recognizer interface, asr_recognizer_if.

Returns:

0 Success.

-1 An error occurred; errno is set.

Copyright © 2014, QNX Software Systems Limited 41

asr.h

asr_context_save()

Save a context.

Synopsis:

#include "asr/asr.h"

int asr_context_save(asr_context_hdl_t *chdl, cfg_item_t *cfg)

Arguments:

chdl

The context handle.

cfg

The configuration structure for the recognizer.

Library:

libasr

Description:

The asr_context_save() function invokes the context_save() callback function defined

in the recognizer interface, asr_recognizer_if.

Returns:

0 Success.

<0 An error occurred.

asr_get_hold_count()

Return the number of holds on the recognizer.

Synopsis:

#include "asr/asr.h"

int asr_get_hold_count()

Arguments:

Library:

libasr

42 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

The asr_get_hold_count() function returns the number of holds on the recognizer.

Returns:

The number of holds.

asr_get_restart()

Return the recongizer restart setting.

Synopsis:

#include "asr/asr.h"

int asr_get_restart()

Arguments:

Library:

libasr

Description:

The asr_get_restart() function returns the recognizer restart setting.

Returns:

The recognizer restart setting.

asr_get_utterance()

Capture an utterance.

Synopsis:

#include "asr/asr.h"

int asr_get_utterance(asr_audio_info_t *audio_info)

Arguments:

audio_info

Audio capture information

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 43

asr.h

Description:

The asr_get_utterance() function invokes the get_utterance() callback function defined

in the recognizer interface, asr_recognizer_if. If no get_utterance() function is defined

in the recognizer interface, the get_utterance() callback function defined in the audio

interface, asra_module_interface, is invoked instead.

Returns:

0 Success.

<0 An error occurred.

asr_hold()

Place a hold on the recognizer.

Synopsis:

#include "asr/asr.h"

int asr_hold()

Arguments:

Library:

libasr

Description:

The asr_hold() function invokes the stop() callback function defined in the recognizer

interface, asr_recognizer_if, and increments the recognizer hold count. The recognizer

stops acquiring audio and processing results for the current request.

Returns:

The number of holds.

asr_open_global()

Open a connection to the recognizer module.

Synopsis:

#include "asr/asr.h"

int asr_open_global(void *asr_hdl, cfg_item_t *config_base, asr_global_data_t
 **data)

Arguments:

44 Copyright © 2014, QNX Software Systems Limited

API Reference

asr_hdl

The handle to the recognizer module.

config_base

Configuration data for the recognizer.

data

Identifying information about the recognizer.

Library:

libasr

Description:

The asr_open_global() function initializes the recognizer and returns identifying

information about the recognizer via the data parameter. The operations performed

by the asr_open_global() function and the contents of the asr_global_data_t

structure may vary by vendor.

Returns:

0 Success.

-1 An error occurred.

asr_open_instance()

Open an instance of the recognizer module.

Synopsis:

#include "asr/asr.h"

int asr_open_instance(void *asr_hdl, asr_instance_data_t **data)

Arguments:

asr_hdl

The handle to the recognizer service.

data

Copyright © 2014, QNX Software Systems Limited 45

asr.h

Identifying information about the instance.

Library:

libasr

Description:

The asr_open_instance() function opens a new instance of the recognizer and returns

identifying information about it via the data parameter. The operations performed by

the asr_open_instance() function and the contents of the asr_instance_data_t

structure may vary by vendor.

Returns:

0 on success; an error code on error.

asr_post_step()

Process a state change.

Synopsis:

#include "asr/asr.h"

void asr_post_step(asr_step_t step)

Arguments:

step

The step to handle.

Library:

libasr

Description:

The asr_post_step() function invokes the step() callback function defined in the

recognizer interface, asr_recognizer_if.

Returns:

Nothing.

46 Copyright © 2014, QNX Software Systems Limited

API Reference

asr_recognition_initialize()

Initialize the recognizer module.

Synopsis:

#include "asr/asr.h"

int asr_recognition_initialize()

Arguments:

Library:

libasr

Description:

The asr_recognition_initialize() function invokes the init() callback function defined

in the recognizer interface, asr_recognizer_if, for each active recognizer module.

Returns:

0 Success.

<0 An error occurred.

asr_release()

Release a hold on the recognizer.

Synopsis:

#include "asr/asr.h"

int asr_release()

Arguments:

Library:

libasr

Description:

The asr_release() function reduces the hold count on the recognizer by one. If no holds

remain it starts the recognizer.

Returns:

The number of holds remaining.

Copyright © 2014, QNX Software Systems Limited 47

asr.h

asr_reload_localization()

Reload localization information.

Synopsis:

#include "asr/asr.h"

int asr_reload_localization(void)

Arguments:

Library:

libasr

Description:

The asr_reload_localization() function finds modules that require localized assets and

reloads the definitions for those assets from the configuration structure.

Returns:

0 Success.

<0 An error occurred.

asr_result_map_status()

Map a vendor-specific recognition result status to a generic ASR result status.

Synopsis:

#include "asr/asr.h"

int asr_result_map_status(void *vendor_AsrRes)

Arguments:

vendor_AsrRes

The vendor-specific result status.

Library:

libasr

Description:

The asr_result_map_status() maps a results status and confidence level to a member

of the result_status enumeration. The exact mapping is vendor dependent.

48 Copyright © 2014, QNX Software Systems Limited

API Reference

Returns:

A corresponding generic ASR result status from the result_status enumeration.

Note that a return code of ASR_RESULT_OK means that an exact mapping wasn't

successful.

asr_set_recognizer()

Set a recognizer as current.

Synopsis:

#include "asr/asr.h"

int asr_set_recognizer(const char *recognizer)

Arguments:

recognizer

The name of the recognizer to set as current.

Library:

libasr

Description:

The asr_set_recognizer() function sets the specified recognizer as the current one for

handling recognition requests.

Returns:

0 Success.

<0 An error occurred.

asr_set_restart()

Set the recongizer restart setting.

Synopsis:

#include "asr/asr.h"

void asr_set_restart(int restart)

Arguments:

restart

Copyright © 2014, QNX Software Systems Limited 49

asr.h

The recognizer restart setting.

Library:

libasr

Description:

The asr_get_restart() function sets the recognizer restart setting.

Returns:

Nothing.

asr_set_utterance()

Copy an utterance to the specified buffer.

Synopsis:

#include "asr/asr.h"

int asr_set_utterance(asr_audio_info_t *audio_info, uint32_t ms_offset)

Arguments:

audio_info

Indicates the structure in which to store the utterance.

ms_offset

The offset (in milliseconds) of the utterance.

Library:

libasr

Description:

The asr_set_utterance() function invokes the set_utterance() callback function defined

in the recognizer interface, asr_recognizer_if. If no set_utterance() function is defined

in the recognizer interface, the set_utterance() callback function defined in the audio

interface, asra_module_interface, is invoked instead.

Returns:

0 Success.

50 Copyright © 2014, QNX Software Systems Limited

API Reference

EBUSY Capture has not completed.

EINVAL The audio properties don't match.

ERANGE Buffer overrun.

asr_slog()

Capture logging information for the recognizer.

Synopsis:

#include "asr/asr.h"

int asr_slog(asr_recognizer_hdl_t *mod, int severity, const char *fmt,...)
__attribute__((format(printf

Arguments:

mod

The recognizer handle.

severity

The severity of the condition that triggered the message. For more information

on severity levels, see slogf() in the QNX C Library Reference. Valid values

include:

• _SLOG_INFO

• _SLOG_WARN

• _SLOG_ERROR

• _SLOG_CRITICAL

fmt

The format string to print to the log buffer. This may include tokens that

will be replaced by values of variable arguments appended to the end of the

call. The max length of an expanded log message is 1024 characters (this

includes all format substitutions and the null terminator).

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 51

asr.h

Description:

The asr_slog() function sends debugging information to the appropriate log. Log

messages will be written to the log buffer only if their severity is greater than or equal

to the specified severity.

Returns:

0 Success.

<0 An error occurred.

asr_start()

Start a recognition request.

Synopsis:

#include "asr/asr.h"

int asr_start()

Arguments:

Library:

libasr

Description:

The asr_start() function starts a recognition request by invoking the start() callback

function defined in the recognizer interface, asr_recognizer_if. The recognizer should

collect and process the audio sample, and then provide status and results via the API

defined in the ASR vendor interface, asrv.h. This call must be asynchronous and

the recognition operation started must be interuptable via a call to asr_stop().

Returns:

0 Success.

<0 An error occurred.

asr_stop()

Stop an in-process recognition request.

Synopsis:

#include "asr/asr.h"

int asr_stop()

52 Copyright © 2014, QNX Software Systems Limited

API Reference

Arguments:

Library:

libasr

Description:

The asr_stop() function invokes the stop() callback function defined in the recognizer

interface, asr_recognizer_if, and sets the hold count to 0. The recognizer stops audio

acquisition and stops processing results. This call blocks until the recognizer returns,

confirming that the recognition request has terminated. If there's no recognition request

running, asr_stop() returns immediately with a successful result.

Returns:

0 Success.

-1 An error occurred; errno is set.

Copyright © 2014, QNX Software Systems Limited 53

asr.h

asra.h

Data types and functions for interacting with the audio module.

The asra.h header file provides functions and data types for capturing audio from

the microphone or reading audio data from a file.

Data types in asra.h

asra_module_hdl_t

This audio module handle.

Synopsis:

#include "asr/asra.h"

typedef struct asra_module_hdl asra_module_hdl_t;

Library:

libasr

Description:

This opaque type represents the audio module handle and is used by io-asr to

manage data it passes to and from the audio module.

Functions in asra.h

asr_audio_initialize()

Initialize the audio module.

Synopsis:

#include "asr/asra.h"

int asr_audio_initialize(void)

Arguments:

Library:

libasr

54 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

The asr_audio_initialize() function initializes registered audio modules by invoking

their init() callback functions (see asra_module_interface_t).

Returns:

0 Success.

-1 An error occurred.

asra_acquire_buffer()

Request an audio buffer.

Synopsis:

#include "asr/asra.h"

int asra_acquire_buffer(asr_audio_info_t *info, int wait)

Arguments:

info

The structure to store the audio sample.

wait

An optional flag to indicate whether the module should wait for a successful

audio sample.

Library:

libasr

Description:

The asra_acquire_buffer() function requests a buffer.

Returns:

0 Capturing has finished. The buffer is available.

>0 Capturing is ongoing.

<0 An error ocurred.

Copyright © 2014, QNX Software Systems Limited 55

asra.h

asra_close()

Close the audio module.

Synopsis:

#include "asr/asra.h"

int asra_close()

Arguments:

Library:

libasr

Description:

The asra_close() function closes the current audio module.

Returns:

0 Success.

<0 An error occurred.

asra_connect()

Connect to the audio module.

Synopsis:

#include "asr/asra.h"

asra_module_hdl_t* asra_connect(const asra_module_interface_t *aif, unsigned
len)

Arguments:

aif

The audio module interface.

len

The size of the audio module interface.

Library:

libasr

56 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

The asra_connect() function connects to the specified audio module by adding the

module to io-asr's list of current modules.

Returns:

The audio module handle on success; NULL on error, with error details written to the

log.

asra_disconnect()

Disconnect the prompt module.

Synopsis:

#include "asr/asra.h"

void asra_disconnect(asra_module_hdl_t *hdl)

Arguments:

hdl

The prompt module handle.

Library:

libasr

Description:

The asra_disconnect() function disconnects the specified audio module from io-asr

and frees the associated memory.

Returns:

Nothing.

asra_get_utterance()

Capture an utterance.

Synopsis:

#include "asr/asra.h"

int asra_get_utterance(asr_audio_info_t *info)

Arguments:

Copyright © 2014, QNX Software Systems Limited 57

asra.h

info

The structure in which to store the utterance and set the properties.

Library:

libasr

Description:

The asra_get_utterance() function stores an audio sample in the buffer referenced by

the info parameter. It also sets the associated properties of the utterance: buffer size,

sample size, sample rate, and number of channels. It waits until the audio capture

has completed before copying the sample and returning.

Returns:

0 Success.

-1 An error occurred.

asra_open()

Open the audio module.

Synopsis:

#include "asr/asra.h"

int asra_open()

Arguments:

Library:

libasr

Description:

The asra_open() function opens the current audio module.

Returns:

>=0 Success.

<0 An error occurred.

58 Copyright © 2014, QNX Software Systems Limited

API Reference

asra_relinquish_buffer()

Relinquish an audio buffer.

Synopsis:

#include "asr/asra.h"

int asra_relinquish_buffer(asr_audio_info_t *info)

Arguments:

info

The structure that contains the buffer.

Library:

libasr

Description:

The asra_relinquish_buffer() function resets the buffer in the info structure so that it

can be used again.

Returns:

0 Success.

-1 An error occurred.

asra_save_wavefile()

Save the captured audio sample as a WAV file.

Synopsis:

#include "asr/asra.h"

int asra_save_wavefile(const char *fname)

Arguments:

fname

The name to use for the WAV file.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 59

asra.h

Description:

The asra_save_wavefile() copies the captured audio sample as a WAV file with the

specified filename.

Returns:

0 Success.

-1 The file couldn't be opened for writing.

asra_set_params()

Set the audio parameters for the module.

Synopsis:

#include "asr/asra.h"

int asra_set_params(int sample_rate, int volume, int frag_size)

Arguments:

sample_rate

The audio sample rate.

volume

The audio volume.

frag_size

The audio fragment size.

Library:

libasr

Description:

The asra_set_params() function sets the global audio parameters.

Returns:

0 Success.

-1 An error occurred.

60 Copyright © 2014, QNX Software Systems Limited

API Reference

asra_set_source()

Set the audio source.

Synopsis:

#include "asr/asra.h"

int asra_set_source(const char *url)

Arguments:

url

The audio source URL.

Library:

libasr

Description:

The asra_set_source() sets the specified URL as the audio source and sets the module

best suited to that URL (the module that rates itself highest) as current.

Returns:

0 Success.

-1 An error occurred.

asra_set_utterance()

Copy an utterance to the specified buffer.

Synopsis:

#include "asr/asra.h"

int asra_set_utterance(asr_audio_info_t *info, int offset_ms)

Arguments:

info

Indicates the structure in which to store the utterance.

offset_ms

Copyright © 2014, QNX Software Systems Limited 61

asra.h

The offset (in milliseconds) of the utterance.

Library:

libasr

Description:

The asra_set_utterance() function copies the last captured audio sample to the buffer

referenced by the info parameter, at the offset specified by the offset_ms parameter.

If the requested offset results in a buffer overrun, an error is returned. If the audio

capture hasn't completed, an error is returned.

Returns:

0 Success.

EBUSY Capture has not completed.

ENOMEM Buffer overrun or other memory error.

asra_start()

Start the audio module.

Synopsis:

#include "asr/asra.h"

int asra_start()

Arguments:

Library:

libasr

Description:

The asra_start() function causes the module to begin to perform its particular service,

for example capturing audio or playing back from a file.

Returns:

0 Success.

-1 An error occurred.

62 Copyright © 2014, QNX Software Systems Limited

API Reference

asra_stop()

Stop the audio capture.

Synopsis:

#include "asr/asra.h"

int asra_stop()

Arguments:

Library:

libasr

Description:

The asra_stop() function forces the audio capturing to stop.

Returns:

0 Success.

-1 An error occurred.

Copyright © 2014, QNX Software Systems Limited 63

asra.h

asrm.h

Functions and data types for module management.

The asrm.h header file provides functions and data types for module management.

It also includes support functions used to implement conversation flows (e.g., verifying

whether a result corresponds to a help request or a cancel request).

Enumerations in asrm.h

asrm_phrase_search_mode_t

Phrase search mode enumeration.

Synopsis:

#include "asr/asrm.h"

 enum {
 PHRASE_EXACT == 0x01
 PHRASE_FUZZY == 0x02
} asrm_phrase_search_mode_t;

Data:

PHRASE_EXACT

Exact match searching.

PHRASE_FUZZY

Fuzzy match searching.

Library:

libasr

Description:

The asrm_phrase_search_mode_t enumeration lists the modes of phrase searching.

64 Copyright © 2014, QNX Software Systems Limited

API Reference

Functions in asrm.h

asr_module_initialize()

Initialize all registered modules.

Synopsis:

#include "asr/asrm.h"

int asr_module_initialize(void)

Arguments:

None.

Library:

libasr

Description:

The asr_module_initialize() function initializes all registered modules by invoking their

respective init() callback functions.

Returns:

0 Success.

-1 A module couldn't be initialized. The details are written to the log.

asr_strmatch()

Calculate the confidence that two strings match.

Synopsis:

#include "asr/asrm.h"

int asr_strmatch(const char *str1, const char *str2)

Arguments:

str1

The first string to compare.

str2

Copyright © 2014, QNX Software Systems Limited 65

asrm.h

The second string to compare.

Library:

libasr

Description:

The asr_strmatch() function calculates a confidence score that can be used to evaluate

the confidence with which str1 matches str2. Higher confidence scores indicate a

higher confidence that the two strings match. This algorithm is based on the

Damerau-Levenshtein edit distance algorithm.

Returns:

An integer confidence score (0 - 1000) that indicates the confidence with which str1

and str2 match.

asrm_activate_module()

Set a module as active.

Synopsis:

#include "asr/asrm.h"

void asrm_activate_module(asr_module_hdl_t *mod)

Arguments:

mod

A pointer to the module handle.

Library:

libasr

Description:

The asrm_activate_module() function sets the specified module as active.

Returns:

Nothing.

66 Copyright © 2014, QNX Software Systems Limited

API Reference

asrm_append_intent()

Append an intent to the specified result.

Synopsis:

#include "asr/asrm.h"

void asrm_append_intent(asr_result_t *result, char *key, char *value)

Arguments:

result

The result to add the intent to.

key

The key of the intent.

value

The value of the intent.

Library:

libasr

Description:

The asrm_append_intent() function appends the intent specified by key and value to

the intents array of the specified result. Note that sufficient memory must be available

to add items to the intent structure. No warning or error is generated if there is

insufficient memory.

Returns:

Nothing.

asrm_append_result()

Append a result to a list of results.

Synopsis:

#include "asr/asrm.h"

asr_result_t* asrm_append_result(asr_result_t *results, asr_result_t
*new_result)

Copyright © 2014, QNX Software Systems Limited 67

asrm.h

Arguments:

results

The results list.

new_result

The result to append.

Library:

libasr

Description:

The asrm_append_result() function appends the result specified by new_result to the

specified results list, results.

Returns:

A pointer to the updated results list.

asrm_connect()

Connect to the module.

Synopsis:

#include "asr/asrm.h"

asr_module_hdl_t* asrm_connect(const asr_conversation_if_t *cif, unsigned len,
 void *module_private)

Arguments:

cif

The conversation module interface.

len

The size of the conversation module interface.

module_private

68 Copyright © 2014, QNX Software Systems Limited

API Reference

Module-specific data that can be attached to the module. The io-asr

service passes this data to to the module's callback functions to support

module-specific actions.

Library:

libasr

Description:

The asrm_connect() function connects to the specified module by adding the module

to io-asr's list of current modules.

Returns:

The audio module handle on success; NULL on error, with error details written to the

log.

asrm_context_add_entries()

Add context entries.

Synopsis:

#include "asr/asrm.h"

int asrm_context_add_entries(asr_context_hdl_t *chdl, const char
*slot_identifier_section, const char *slot_name, asr_slot_entry_t *slot_entry,
 int num_slot_entries)

Arguments:

chdl

A pointer to the handle of the context to add entries to.

slot_identifier_section

The configuration node for the section required (e.g., "phone").

slot_name

The name of the slot to add (e.g., "voice dialing").

slot_entry

An array of slot entries.

Copyright © 2014, QNX Software Systems Limited 69

asrm.h

num_slot_entries

The size of the array of slot entries.

Library:

libasr

Description:

The asrm_context_add_entries() function adds entries to the specified context by first

finding the configuration node identified by the slot_identifier_section, then invoking

the current recognition module's context_add_entries() callback function on that

configuration node. The exact implementation of the context_add_entries() callback

function depends on the ASR vendor.

Returns:

0 Success.

<0 An error occurred.

asrm_context_create()

Create a context.

Synopsis:

#include "asr/asrm.h"

asr_context_hdl_t* asrm_context_create(const char *section_identifier)

Arguments:

section_identifier

The configuration section to use to create the context.

Library:

libasr

Description:

The asrm_context_create() function creates a new context from the specified section

by invoking the current recognition module's context_create() callback. The exact

implementation of the callback depends on the ASR vendor.

70 Copyright © 2014, QNX Software Systems Limited

API Reference

Returns:

The new context handle.

asrm_context_destroy()

Save a context.

Synopsis:

#include "asr/asrm.h"

int asrm_context_destroy(asr_context_hdl_t *chdl)

Arguments:

chdl

A pointer to the context handle.

Library:

libasr

Description:

The asrm_context_destroy() function destroys the specified context by invoking the

current recognition module's context_destroy() callback function. The exact

implementation of the callback depends on the ASR vendor.

Returns:

0 Success.

<0 An error occurred.

asrm_context_save()

Save a context.

Synopsis:

#include "asr/asrm.h"

int asrm_context_save(asr_context_hdl_t *chdl, const char *section_identifier)

Arguments:

chdl

A pointer to the context handle.

Copyright © 2014, QNX Software Systems Limited 71

asrm.h

section_identifier

The configuration section to save.

Library:

libasr

Description:

The asrm_context_save() function saves the specified context by first finding the

configuration section identified by the section_identifier, then invoking the current

recognition module's context_save() callback function on that section. The exact

implementation of the callback depends on the ASR vendor.

Returns:

0 Success.

<0 An error occurred.

asrm_create_dictation_result()

Create a dictation result.

Synopsis:

#include "asr/asrm.h"

asr_result_t* asrm_create_dictation_result(const char *grammar, const char
*rule, int conf, const char *inbuffer)

Arguments:

grammar

The grammar of the new result.

rule

The rule of the new result.

conf

The confidence level of the new result.

inbuffer

72 Copyright © 2014, QNX Software Systems Limited

API Reference

The recognized speech to copy to the new result.

Library:

libasr

Description:

The asrm_create_dictation_result() creates a new dictation result based on the specified

parameters. The new result has the recognition type set to ASR_RECOGNITION_DIC

TATION, the result type set to ASR_RESULT_FINAL, and the result status set to

ASR_RESULT_OK. The grammar, rule, confidence level, and recognized speech are

set to the corresponding specified parameters.

Returns:

The new result; NULL on error.

asrm_deactivate_module()

Set a module as inactive.

Synopsis:

#include "asr/asrm.h"

void asrm_deactivate_module(asr_module_hdl_t *mod)

Arguments:

mod

A pointer to the module handle.

Library:

libasr

Description:

The asrm_deactivate_module() function sets the specified module as inactive.

Returns:

Nothing.

Copyright © 2014, QNX Software Systems Limited 73

asrm.h

asrm_delete_terminals()

Delete result terminals.

Synopsis:

#include "asr/asrm.h"

int asrm_delete_terminals(asr_result_t *result, unsigned int start_index,
unsigned int end_index)

Arguments:

result

A pointer to the result structure to delete terminals from.

start_index

The index from which to start the deletion.

end_index

The index of the last terminal to delete.

Library:

libasr

Description:

The asrm_delete_terminals() deletes the result terminals from start_index to end_index,

inclusive.

Returns:

0 Success.

-1 An error occurred.

asrm_find_module()

Find the specified module.

Synopsis:

#include "asr/asrm.h"

asr_module_hdl_t* asrm_find_module(const char *module_name)

74 Copyright © 2014, QNX Software Systems Limited

API Reference

Arguments:

module_name

The name of the module to find.

Library:

libasr

Description:

The asrm_find_module() function returns the module handle of the named module.

Returns:

A pointer to the module handle; NULL if the module can't be found.

asrm_find_phrase()

Find a configuration item containing a result string.

Synopsis:

#include "asr/asrm.h"

cfg_item_t* asrm_find_phrase(cfg_item_t *base, const char *result, int
start_terminal, asrm_phrase_search_mode_t mode, int *beg_terminal, int
*end_terminal, int *conf)

Arguments:

base

The configuration structure to search.

result

The result string to search for.

start_terminal

Not used.

mode

The search mode (from the asrm_phrase_search_mode_t enumeration).

Copyright © 2014, QNX Software Systems Limited 75

asrm.h

beg_terminal

On success, beg_terminal is set to the index of the first terminal in the

match.

end_terminal

On success, end_terminal is set to the index of the last terminal in the

match.

conf

On success, conf is set to the confidence level of the match.

Library:

libasr

Description:

The asrm_find_phrase() function searches a configuration structure for a specified

result string and returns a pointer to the matching configuration item.

Returns:

A pointer to the configuration item that was the closest match; NULL on failure.

asrm_find_phrase_id()

Return the ID of a configuration item containing a result string.

Synopsis:

#include "asr/asrm.h"

int asrm_find_phrase_id(cfg_item_t *base, const char *result_string, int
start_terminal, int *terminal_end, int *conf, int def_id)

Arguments:

base

The configuration structure to search.

result_string

The result string to search for.

76 Copyright © 2014, QNX Software Systems Limited

API Reference

start_terminal

Not used.

terminal_end

On success, terminal_end is set to the index of the last terminal in the

match.

conf

On success, conf is set to the confidence level of the match.

def_id

A default ID to return if the configuration item isn't found.

Library:

libasr

Description:

The asrm_find_phrase_id() function searches a configuration for a specified result

string and returns the ID of the matching configuration item. The configuration item

must contain an exact match.

Returns:

A pointer to the configuration item that was the closest match; NULL on failure.

asrm_find_result_phrase()

Find a configuration item containing a speech result.

Synopsis:

#include "asr/asrm.h"

cfg_item_t* asrm_find_result_phrase(cfg_item_t *base, asr_result_t *result,
int start_terminal, int *terminal_beg, int *terminal_end, int *conf)

Arguments:

base

The configuration structure to search.

Copyright © 2014, QNX Software Systems Limited 77

asrm.h

result

The speech result containing the string to search for.

start_terminal

Not used.

terminal_beg

On success, terminal_beg is set to the index of the first terminal in the

match.

terminal_end

On success, terminal_end is set to the index of the last terminal in the

match.

conf

On success, conf is set to the confidence level of the match.

Library:

libasr

Description:

The asrm_find_result_phrase() function searches the specified configuration for the

string in the specified speech result and returns a pointer to the matching configuration

item. The configuration item must contain an exact match.

Returns:

A pointer to the matching configuration item; NULL on failure.

asrm_find_result_phrase_id()

Return the ID of a configuration item containing a speech result.

Synopsis:

#include "asr/asrm.h"

int asrm_find_result_phrase_id(cfg_item_t *base, asr_result_t *result, int
start_terminal, int *terminal_beg, int *terminal_end, int *conf, int def_id)

78 Copyright © 2014, QNX Software Systems Limited

API Reference

Arguments:

base

The configuration structure to search.

result

The speech result containing the string to search for.

start_terminal

Not used.

terminal_beg

On success, beg_terminal is set to the index of the first terminal in the

match.

terminal_end

On success, beg_terminal is set to the index of the last terminal in the match.

conf

On success, conf is set to the confidence level of the match.

def_id

A default ID to return if the phrase isn't found.

Library:

libasr

Description:

The asrm_find_result_phrase_id() function searches the specified configuration for

the string in the specified speech result and returns the ID of the matching

configuration item. The configuration item must contain an exact match.

Returns:

The configuration ID of the matching configuration item; the default ID if a match

isn't found.

Copyright © 2014, QNX Software Systems Limited 79

asrm.h

asrm_free_result()

Free the memory associated with a recognition result.

Synopsis:

#include "asr/asrm.h"

void asrm_free_result(asr_result_t *result)

Arguments:

result

A pointer to the recognition result to free.

Library:

libasr

Description:

The asrm_free_result() function frees all the memory associated with and referenced

by the specified result.

Returns:

Nothing.

asrm_get_config()

Get the current configuration.

Synopsis:

#include "asr/asrm.h"

cfg_item_t* asrm_get_config()

Arguments:

Library:

libasr

Description:

The asrm_get_config() function retrieves the current configuration tree.

80 Copyright © 2014, QNX Software Systems Limited

API Reference

Returns:

A pointer to the root of the configuration tree.

asrm_get_exclusive()

Get the exclusive module.

Synopsis:

#include "asr/asrm.h"

asr_module_hdl_t* asrm_get_exclusive(void)

Arguments:

Library:

libasr

Description:

The asrm_get_exclusive() function returns a handle to the exclusive module, if there

is one.

Returns:

The exclusive module's handle; NULL if there is no exclusive module.

asrm_get_holdcount()

Return the number of holds on the recognizer.

Synopsis:

#include "asr/asrm.h"

int asrm_get_holdcount(void)

Arguments:

Library:

libasr

Description:

The asrm_get_holdcount() function returns the number of holds on the recognizer.

Returns:

The number of holds.

Copyright © 2014, QNX Software Systems Limited 81

asrm.h

asrm_get_intent_field()

Get the specified intent.

Synopsis:

#include "asr/asrm.h"

const char* asrm_get_intent_field(asr_result_t *result, const char *field,
asr_result_tag_t **tag, int *iterator)

Arguments:

result

The result structure to search.

field

The field to search for.

tag

The tag entry for the successfully located intent.

iterator

The index to start searching from. On return, the index of the successfully

located intent.

Library:

libasr

Description:

The asrm_get_intent_field() function returns a reference to the specified intent, field,

within one of the specified result's intent entries. If tag is provided, it's set to point

to the intent's tag entry, which contains confidence levels, an ID, and possibly

millisecond start and end values. If iterator is provided, its value is used as a starting

point for scanning for the specified intent. If an intent is found whose key matches

field, its index is stored in iterator.

If field is NULL, the entry at the index indicated by iterator is returned. If tag is NULL,

no tag information is returned. If iterator is NULL, the index search begins at 0.

For example, to get the "hour" field:

82 Copyright © 2014, QNX Software Systems Limited

API Reference

value = asrm_get_intent_field (result, "hour", NULL, NULL);

To extract all "hour" fields:

for (i = 0; (value = asrm_get_intent_field(result, "hour", NULL, &i));){
printf ("Found hour intent, value = %s\n", value);
}
-- extract all fields
for (i = 0; (value = asrm_get_intent_field(result, NULL, NULL, &i));){
printf ("Found hour intent, value = %s\n", value);
}

Returns:

The value of the intent on success; NULL on failure (the intent wasn't found).

asrm_get_locale()

Get the current locale.

Synopsis:

#include "asr/asrm.h"

const char* asrm_get_locale()

Arguments:

Library:

libasr

Description:

The asrm_get_locale() funtion retrieves the current local from the global configuration

tree.

Returns:

The name of the current locale.

asrm_get_utterance()

Capture an utterance.

Synopsis:

#include "asr/asrm.h"

int asrm_get_utterance(asr_module_hdl_t *mod, asr_audio_info_t *audio_info)

Arguments:

Copyright © 2014, QNX Software Systems Limited 83

asrm.h

mod

A pointer to the module handle (optional).

audio_info

The structure in which to store the utterance and set the properties.

Library:

libasr

Description:

The asrm_get_utterance() function stores an audio sample in the buffer referenced by

the audio_info parameter by invoking the asra_get_utterance() function.

Returns:

0 Success.

-1 An error occurred.

asrm_is_cancellation_request()

Determine whether the current result is a cancellation request.

Synopsis:

#include "asr/asrm.h"

int asrm_is_cancellation_request(asr_result_t *result, cfg_item_t
*opt_cancel_section, asr_result_action_t *ret)

Arguments:

result

A pointer to the result structure.

opt_cancel_section

A pointer to the cancel configuration section.

ret

The action to take.

84 Copyright © 2014, QNX Software Systems Limited

API Reference

Library:

libasr

Description:

The asrm_is_cancellation_request() function determines whether the specified result

is a cancellation request. If it is, the function sets ret to the appropriate action code.

Returns:

1 The result is a cancellation request. The res parameter is set to ASR_RECOGNI

TION_CANCEL.

0 The result is not a cancellation request.

asrm_is_confirmation()

Determine whether the current result is a confirmation.

Synopsis:

#include "asr/asrm.h"

int asrm_is_confirmation(asr_result_t *result, cfg_item_t *opt_confirm)

Arguments:

result

A pointer to the result.

opt_confirm

A pointer to the configuration item that specifies confirmation options (e.g.,

"yes", "yeah", "no", "nope", and so on).

Library:

libasr

Description:

The asrm_is_help_or_cancel() function determines whether the specified result is a

confirmation, either affirmative or negative.

Returns:

1 The response was affirmative.

-1 The response was negative.

Copyright © 2014, QNX Software Systems Limited 85

asrm.h

0 The response is not understood (neither affirmative nor negative).

asrm_is_help_or_cancel()

Determine whether the current result is either a help request or a cancel request.

Synopsis:

#include "asr/asrm.h"

int asrm_is_help_or_cancel(asr_result_t *result, cfg_item_t *opt_help_section,
 cfg_item_t *opt_cancel_section, asr_result_action_t *ret, int perform)

Arguments:

result

A pointer to the result structure.

opt_help_section

A pointer to the help configuration section.

opt_cancel_section

A pointer to the cancel configuration section.

ret

The action to take.

perform

A flag to indicate whether to take action on the result.

Library:

libasr

Description:

The asrm_is_help_or_cancel() function determines whether the specified result is

either a help request or a cancel request. If it is one of these, the function sets ret to

the appropriate action code. If the result is a help request and perform is nonzero,

the asrp_active_help() function is invoked.

86 Copyright © 2014, QNX Software Systems Limited

API Reference

Returns:

1 The result is either a help request or a cancel request. The res parameter is set to

either ASR_RECOGNITION_CANCEL or ASR_RECOGNITION_RESTART.

0 The result is neither a help request nor a cancel request.

asrm_is_help_request()

Determine whether the current result is a help request.

Synopsis:

#include "asr/asrm.h"

int asrm_is_help_request(asr_result_t *result, cfg_item_t *opt_help_section,
asr_result_action_t *ret, int perform)

Arguments:

result

A pointer to the result structure.

opt_help_section

A pointer to the help configuration section.

ret

The action to take.

perform

A flag to indicate whether to take action on the result.

Library:

libasr

Description:

The asrm_is_help_request() function determines whether the specified result is a help

request. If it is, the function sets ret to the appropriate action code. If perform is

nonzero, the asrp_active_help() function is invoked.

Copyright © 2014, QNX Software Systems Limited 87

asrm.h

Returns:

1 The result is a cancellation request. The res parameter is set to ASR_RECOGNI

TION_RESTART.

0 The result is not a cancellation request.

asrm_next_module()

Find the next module.

Synopsis:

#include "asr/asrm.h"

asr_module_hdl_t* asrm_next_module(asr_module_hdl_t *module)

Arguments:

module

A pointer to the module handle.

Library:

libasr

Description:

The asrm_next_module() function returns the module pointed to by the specifed

module's "next" pointer.

Returns:

On success, a pointer to the handle for the module following the specified module;

otherwise, a pointer to the module list.

asrm_post_result()

Post a recognition result.

Synopsis:

#include "asr/asrm.h"

asr_result_action_t asrm_post_result(asr_result_t *result)

Arguments:

result

88 Copyright © 2014, QNX Software Systems Limited

API Reference

A pointer to the result to post.

Library:

libasr

Description:

The asrm_post_result() function posts recognition results to the current conversation.

Returns:

The action to take on the result.

asrm_recognizer_hold()

Place a hold on the recognizer.

Synopsis:

#include "asr/asrm.h"

int asrm_recognizer_hold(asr_module_hdl_t *mod)

Arguments:

mod

A pointer to the module handle of the recognizer.

Library:

libasr

Description:

The asrm_recognizer_hold() function stops the current recognition turn and increments

the recognizer hold count. The recognizer stops acquiring audio and processing results

for the current request.

Returns:

The number of holds.

Copyright © 2014, QNX Software Systems Limited 89

asrm.h

asrm_recognizer_release()

Release a hold on the recognizer.

Synopsis:

#include "asr/asrm.h"

int asrm_recognizer_release(asr_module_hdl_t *mod)

Arguments:

mod

A pointer to the module handle of the recognizer.

Library:

libasr

Description:

The asrm_recognizer_release() function reduces the hold count on the recognizer by

one. If no holds remain, it starts the recognizer.

Returns:

The number of holds remaining.

asrm_recognizer_start()

Start a recognition request.

Synopsis:

#include "asr/asrm.h"

int asrm_recognizer_start(asr_module_hdl_t *mod)

Arguments:

mod

A pointer to the module handle.

Library:

libasr

90 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

The asrm_recognizer_start() function starts a recognition request by invoking asr_start().

Returns:

0 Success.

<0 An error occurred.

asrm_recognizer_stop()

Stop a recognition request.

Synopsis:

#include "asr/asrm.h"

int asrm_recognizer_stop(asr_module_hdl_t *mod)

Arguments:

mod

A pointer to the module handle.

Library:

libasr

Description:

The asrm_recognizer_stop() function stops a recognition request by invoking asr_stop().

Returns:

0 Success.

<0 An error occurred.

asrm_set_active_sections()

Set the specified configuration as active.

Synopsis:

#include "asr/asrm.h"

int asrm_set_active_sections(asr_module_hdl_t *mod, int num_sections, const
char **sections)

Arguments:

Copyright © 2014, QNX Software Systems Limited 91

asrm.h

mod

A pointer to the module handle.

num_sections

The number of configuration sections.

sections

A pointer to the array of configuration sections.

Library:

libasr

Description:

The asrm_set_active_sections() function sets the vendor configuration sections used

by the module. This allows different grammars to be used by the NLAL in different

circumstances.

Returns:

0 Success.

-1 An error occurred.

asrm_set_exclusive()

Set a module as exclusive.

Synopsis:

#include "asr/asrm.h"

int asrm_set_exclusive(asr_module_hdl_t *mod, asr_context_hdl_t *context)

Arguments:

mod

A pointer to the module handle.

context

A pointer to the context handle.

92 Copyright © 2014, QNX Software Systems Limited

API Reference

Library:

libasr

Description:

The asrm_set_exclusive() function sets the specified module as exclusive. Only the

exclusive module will see results from recognition sessions until its exclusive status

is removed. Exclusive modules must implement the select_result() and on_result()

callback functions; otherwise, the call to asrm_set_exclusive() will fail. If a recognition

context is provided, it will be used instead of the contexts described in the active

configuration sections.

Returns:

0 Success.

-1 An error occurred.

asrm_set_locale()

Set the locale in the global configuration.

Synopsis:

#include "asr/asrm.h"

int void asrm_set_locale(const char *locale)

Arguments:

locale

The name of the locale to set.

Library:

libasr

Description:

The asrm_set_locale() function sets the locale in the global configuration tree to the

specified value.

Returns:

Nothing.

Copyright © 2014, QNX Software Systems Limited 93

asrm.h

asrm_set_utterance()

Copy an utterance to the specified buffer.

Synopsis:

#include "asr/asrm.h"

int asrm_set_utterance(asr_module_hdl_t *mod, asr_audio_info_t *audio_info,
uint32_t ms_offset)

Arguments:

mod

A pointer to the module handle (for error logging).

audio_info

A pointer to the structure in which to store the utterance.

ms_offset

The offset (in milliseconds) of the utterance.

Library:

libasr

Description:

The asrm_set_utterance() function copies the last captured audio sample to the buffer

referenced by the audio_info parameter, at the offset specified by the ms_offset

parameter. If the requested offset results in a buffer overrun, an error is returned. If

the audio capture has not completed, an error is returned.

Returns:

0 Success.

EBUSY Capture has not completed.

ENOMEM Buffer overrun or other memory error.

94 Copyright © 2014, QNX Software Systems Limited

API Reference

asrm_slog()

Capture logging information for the module.

Synopsis:

#include "asr/asrm.h"

int asrm_slog(asr_module_hdl_t *mod, int severity, const char *fmt,...)
__attribute__((format(printf

Arguments:

mod

The module handle.

severity

The severity of the condition that triggered the message. For more information

on severity levels, see slogf() in the QNX C Library Reference. Valid values

include:

• _SLOG_INFO

• _SLOG_WARN

• _SLOG_ERROR

• _SLOG_CRITICAL

fmt

The format string to print to the log buffer. This may include tokens that

will be replaced by values of variable arguments appended to the end of the

call. The max length of an expanded log message is 1024 characters (this

includes all format substitutions and the null terminator).

Library:

libasr

Description:

The asrm_slog() function sends debugging information to the appropriate log. Log

messages will be written to the log buffer only if their severity is greater than or equal

to the specified severity.

Copyright © 2014, QNX Software Systems Limited 95

asrm.h

Returns:

0 Success.

<0 An error occurred.

asrm_strdup_result()

Copy the text from a result.

Synopsis:

#include "asr/asrm.h"

char* asrm_strdup_result(asr_result_t *result, unsigned int index)

Arguments:

result

A pointer to the result to copy from.

index

The index to begin copying from.

Library:

libasr

Description:

The asrm_strdup_result() method copies the terminals from the specified result to a

new string, starting from the specified index.

Returns:

asrm_unset_exclusive()

Remove a module's exclusive setting.

Synopsis:

#include "asr/asrm.h"

void asrm_unset_exclusive(asr_module_hdl_t *mod)

Arguments:

mod

96 Copyright © 2014, QNX Software Systems Limited

API Reference

A pointer to the module handle.

Library:

libasr

Description:

The asrm_unset_exclusive() function removes the exclusive setting of the specified

module.

Returns:

Nothing.

asrnl_check_section_rules()

Check the active configuration for BNF rules.

Synopsis:

#include "asr/asrm.h"

int asrnl_check_section_rules(cfg_item_t *base, char **match_beg, char
**remaining_utt, cfg_item_t **match_item, cfg_item_t *payload)

Arguments:

base

A pointer to the base of the configuration tree.

match_beg

A pointer to the start of the matching configuration section.

remaining_utt

A pointer to the remainder of the utterance.

match_item

The configuration item that describes the BNF rule that the NLAL matched

the utterance against.

payload

Copyright © 2014, QNX Software Systems Limited 97

asrm.h

A pointer to the configuration item to check.

Library:

libasr

Description:

The asrnl_check_section_rules() checks the active configuration section for the BNF

rules that the NLAL used to extract intents.

Returns:

The confidence level of the result.

asrnl_evaluate_result()

Evaluate a result against the configuration.

Synopsis:

#include "asr/asrm.h"

asr_result_t* asrnl_evaluate_result(asr_result_t *result)

Arguments:

result

A pointer to the result to evaluated.

Library:

libasr

Description:

The asrnl_evaluate_result() function checks the recognized speech in the specified

result against the active configuration sections to interpret it as a rule or an intent. If

the result is successfully interpreted, it is appended to the results list.

Returns:

A pointer to the updated results list.

98 Copyright © 2014, QNX Software Systems Limited

API Reference

asrv_get_common_value()

Get the value for a specified key.

Synopsis:

#include "asr/asrm.h"

const char* asrv_get_common_value(const char *key)

Arguments:

key

The key string to search on (e.g., "locale").

Library:

libasr

Description:

The asrv_get_common_value() function finds the value of the configuration item

corresponding to the specified key and that matches at least one other configuration

item's value.

Returns:

The value of the configuration item; NULL if it isn't found.

find_phrase()

Return the ID of a configuration item containing a specified string.

Synopsis:

#include "asr/asrm.h"

int find_phrase(cfg_item_t *base, const char *result, int start_terminal, int
 *terminal, int *conf, int def_id)

Arguments:

base

The configuration structure to search.

result

Copyright © 2014, QNX Software Systems Limited 99

asrm.h

The result string to search for.

start_terminal

Not used.

terminal

On success, terminal is set to the index of the first terminal in the match.

conf

On success, conf is set to the confidence level of the match.

def_id

A default ID to return if the phrase isn't found.

Library:

libasr

Description:

The find_phrase() function finds the specified string in the specified configuration

and returns the ID of the matching configuration item. The configuration item must

contain an exact match.

Returns:

The configuration ID of the matching configuration item; the default ID if a match

isn't found.

find_result_phrase()

Return the ID of a configuration item containing a speech result.

Synopsis:

#include "asr/asrm.h"

int find_result_phrase(cfg_item_t *base, asr_result_t *result, int
start_terminal, int *terminal, int *conf, int def_id)

Arguments:

base

100 Copyright © 2014, QNX Software Systems Limited

API Reference

The configuration structure to search.

result

The speech result containing the string to search for.

start_terminal

Not used.

terminal

On success, terminal is set to the index of the first terminal in the match.

conf

On success, conf is set to the confidence level of the match.

def_id

A default ID to return if the phrase isn't found.

Library:

libasr

Description:

The find_result_phrase() function finds the specified result phrase in the specified

configuration and returns the ID of the matching configuration item. The configuration

item must contain an exact match.

Returns:

The configuration ID of the matching configuration item or the default ID if a match

isn't found.

strconfstr()

Calculate the confidence that two strings match (case insensitive)

Synopsis:

#include "asr/asrm.h"

Copyright © 2014, QNX Software Systems Limited 101

asrm.h

int strconfstr(char const *string, int opt_len, char const *find, char
**ret_beg, char **ret_end)

Arguments:

string

The larger string to search within.

find

The string to search for.

opt_len

The number of characters starting from string to include in the search.

ret_beg

If provided, is set to the character in string at the beginning of the matched

range.

ret_end

If provided, is set to first the character in string past the matched range.

Library:

libasr

Description:

The strconfstr() function searches for a substring of string that loosely matches the

find string and then returns the confidence level of the match.

Returns:

The confidence level (0 - 1000) of the best match of find in string.

102 Copyright © 2014, QNX Software Systems Limited

API Reference

asrp.h

Functions and data types for prompts.

The asrp.h header file provides functions and data types for rendering prompts.

Data types in asrp.h

asr_prompt_interface

The prompt interface.

Synopsis:

struct asr_prompt_interface {
 const char * version ;
 asrp_module_hdl_t *(* connect)(const asrp_module_interface_t *pmif,
unsigned pmif_size, void *module_data);
 int(* slog)(asrp_module_hdl_t *mod, int severity, const char *format,...)
 __attribute__((format(printf;
 int(*) asrp_processing_flags_t(* start)(asrp_prompt_info_t *pi);
 void(* stop)(asrp_processing_flags_t prompt_services);
 void(* reset)(void);
 void(* active_help)(void);
 void(* section_help)(cfg_item_t *section);
 asrp_processing_flags_t(* play_tts)(char *fmt,...)
__attribute__((format(printf;
}asr_prompt_interface_t;

Data:

const char * version

The version of the module.

asrp_module_hdl_t *(* connect)(const asrp_module_interface_t *pmif, unsigned pmif_size, void

*module_data)

The connect() callback function.

int(* slog)(asrp_module_hdl_t *mod, int severity, const char *format,...) __attribute__((format(printf

The logging callback function.

int(*) asrp_processing_flags_t(* start)(asrp_prompt_info_t *pi)

The start() callback function.

void(* stop)(asrp_processing_flags_t prompt_services)

The stop() callback function.

Copyright © 2014, QNX Software Systems Limited 103

asrp.h

void(* reset)(void)

The reset() callback function.

void(* active_help)(void)

The active_help() callback function.

void(* section_help)(cfg_item_t *section)

The section_help() callback function.

asrp_processing_flags_t(* play_tts)(char *fmt,...) __attribute__((format(printf

The play_tts() callback function.

Library:

libasr

Description:

This data structure represents the high-level interface between the prompt module

and io-asr. The callback functions provide the mechanism for io-asr to request

actions from the prompt module.

asr_prompt_interface_t

Alias for the prompt interface.

Synopsis:

#include <asr/asrp.h>

asr_prompt_interface_t;

Library:

libasr

Description:

This type is an alias for the prompt interface, asr_prompt_interface.

asrp_module_hdl_t

The prompt module handle.

Synopsis:

#include <asr/asrp.h>

104 Copyright © 2014, QNX Software Systems Limited

API Reference

typedef struct asrp_module_hdl asrp_module_hdl_t;

Library:

libasr

Description:

This opaque data structure is used by io-asr to manage data it passes to and from

the prompt module.

asrp_module_interface

The prompt module interface.

Synopsis:

struct asrp_module_interface asrp_module_interface_t {
 const char * name ;
 const char * version ;
 int(* init)(void *module_data, cfg_item_t *asr_config);
 int(* rate)(asrp_prompt_info_t *prompt_info, int *visual_rating, int
*audio_rating, void *module_data);
 int(* unrate)(void *module_data);
 asrp_processing_flags_t(* start)(asrp_prompt_info_t *prompt_info, void
*module_data);
 asrp_processing_flags_t(* stop)(void *module_data);
 void(* step)(asr_step_t step, void *module_data);
};

Data:

const char * name

The name of the prompt module.

const char * version

The version of the prompt module.

int(* init)(void *module_data, cfg_item_t *asr_config)

Initialize the prompt module.

This function initializes the prompt module. Among other actions it may

take, it should open the PPS control object for monitoring.

Arguments

• module_data A pointer to any data the prompt module requires for

initialization.

• asr_config Configuration settings for the module.

Returns

• 0 on success; -1 on error

Copyright © 2014, QNX Software Systems Limited 105

asrp.h

int(* rate)(asrp_prompt_info_t *prompt_info, int *visual_rating, int *audio_rating, void *module_data)

Set a rating for this prompt module.

The rate() function sets a rating for the prompt interface handled by this

module. Higher quality, interactive interfaces (such as the HMI) generally

receive higher ratings than less interactive interfaces (such as the console).

Arguments

• prompt_info Identifying information about the prompt.

• visual_rating The visual rating is returned in this parameter.

• audio_rating The audio rating is returned in this parameter.

• module_data Optional data relating to the module.

Returns

• 0 on success; -1 on error

int(* unrate)(void *module_data)

Remove ratings for this prompt module.

The unrate() function removes ratings for this module.

Arguments

• module_data Optional data relating to the module.

Returns

• 0 on success; -1 on error

asrp_processing_flags_t(* start)(asrp_prompt_info_t *prompt_info, void *module_data)

Start the prompt module.

The start() function starts the prompt module.

Arguments

• prompt_info Information to pass to the prompt module.

• module_data Optional data relating to the module.

Returns

• Flags to indicate which, if any, prompts were rendered.

asrp_processing_flags_t(* stop)(void *module_data)

106 Copyright © 2014, QNX Software Systems Limited

API Reference

Stop the prompt module.

The stop() function stops the prompt module.

Arguments

• module_data Optional data relating to the module.

Returns

• ASRP_NO_PROMPTS on success.

void(* step)(asr_step_t step, void *module_data)

Handle a step.

The step() function handles a step. The action taken depends on the step

specified.

Arguments

• step The step to handle.

• module_data Optional data relating to the module.

Library:

libasr

Description:

This structure defines the interface from io-asr to the prompt module. The prompt

module's constructor function passes this structure to asrp_connect() (p. 114). The

io-asr service invokes the member callback functions depending on the state of the

module.

asrp_module_interface_t

Alias for the prompt module interface.

Synopsis:

#include <asr/asrp.h>

typedef struct asrp_module_interface asrp_module_interface_t;

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 107

asrp.h

Description:

This type is an alias for the prompt module interface, asrp_module_interface.

asrp_post_step()

Post a recognition step.

Synopsis:

#include <asr/asrp.h>

int asrp_post_step(asr_step_t step)

Arguments:

step

The step to post.

Library:

libasr

Description:

The asrp_post_step() function posts the specified step to the active prompt module.

Returns:

0 Success.

asrp_prompt_info

The prompt information type.

Synopsis:

struct asrp_prompt_info asrp_prompt_info_t {
 asrp_processing_flags_t prompt_flags ;
 const char * audio_url ;
 const char * disp_url ;
 asrp_visual_dialog_t visual_dialog ;
 cfg_item_t * payload ;
 asrp_response_cb_t response_cb ;
};

Data:

asrp_processing_flags_t prompt_flags

The type of prompt.

108 Copyright © 2014, QNX Software Systems Limited

API Reference

const char * audio_url

The URL for the audio source for an audio prompt.

Acceptable formats include file:// and string:// for text for TTS;

wav:// for an audio file to play.

const char * disp_url

The URL for a noninteractive display (text bubbles and other simple notices).

asrp_visual_dialog_t visual_dialog

The visual dialog to display.

cfg_item_t * payload

Data that can be provided for the caller's consumption.

This member can express arbritrary information, so is useful for providing

text to display or audio files to load.

asrp_response_cb_t response_cb

Optional callback from the prompt module (on-screen dialogs defined in the

payload).

Library:

libasr

Description:

This type represents information required to produce a prompt.

asrp_prompt_info_t

Alias for the prompt information type.

Synopsis:

#include <asr/asrp.h>

typedef struct asrp_prompt_info asrp_prompt_info_t;

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 109

asrp.h

Description:

This type is an alias for the prompt information type, asrp_prompt_info.

asrp_visual_dialog

The prompt visual dialog.

Synopsis:

struct asrp_visual_dialog asrp_visual_dialog_t {
 const char * header ;
 int num_items ;
 const char ** item ;
 const char * footer ;
 const char * cancel_button ;
 asrp_response_cb_t response_cb ;
 void * data ;
};

Data:

const char * header

Text to display above the array of items.

int num_items

The number of items in the array.

const char ** item

The items to display.

const char * footer

Text to display below the array of items.

const char * cancel_button

Text to display on the cancel button.

asrp_response_cb_t response_cb

A callback to be invoked on the OK button.

void * data

Data to be passed in the response callback.

Library:

libasr

110 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

This type is used to set text to be displayed to the user in a visual dialog in the HMI.

The elements of this type represent the header and footer of the dialog, an array of

items to display in the center of the dialog, and text to be displayed on the cancel

button, as well as a callback function and optional data to pass to the callback.

asrp_visual_dialog_t

Alias for the prompt visual dialog.

Synopsis:

#include <asr/asrp.h>

typedef struct asrp_visual_dialog asrp_visual_dialog_t;

Library:

libasr

Description:

This type is an alias for the prompt visual dialog, asrp_visual_dialog.

Enumerations in asrp.h

asrp_processing_flags_t

Prompt type enumeration.

Synopsis:

#include <asr/asrp.h>

typedef enum {
 ASRP_NO_PROMPTS == 0
 ASRP_AUDIO_PROMPT == 0x01
 ASRP_VISUAL_PROMPT == 0x02
 ASRP_INTERACTIVE_PROMPT == 0x10
 ASRP_PROMPT_STEP_NOTIFY == 0x20
} asrp_processing_flags_t;

Data:

ASRP_NO_PROMPTS

No prompts.

ASRP_AUDIO_PROMPT

Audio prompt.

Copyright © 2014, QNX Software Systems Limited 111

asrp.h

ASRP_VISUAL_PROMPT

Visual prompt, such as a dialog.

ASRP_INTERACTIVE_PROMPT

Interactive prompt to collect user input.

ASRP_PROMPT_STEP_NOTIFY

The member is used in processing prompts.

Library:

libasr

Description:

The asrp_processing_flags_t enumeration lists the types of prompts that can

be processed. Depending on the stage processing, members of this enumeration could

indicate prompts that have been rendered or prompts that are required.

tts_error_class_t

Error class enumeration.

Synopsis:

#include <asr/asrp.h>

 enum {
 TSS_ERROR_CLASS_NONE
 TTS_ERROR_CLASS_MODIFIER
 TTS_ERROR_CLASS_URL
 TTS_ERRROR_CLASS_RESOURCE
 TTS_ERROR_CLASS_SYNTHESIS
 TTS_ERROR_CLASS_SYSTEM
} tts_error_class_t;

Data:

TSS_ERROR_CLASS_NONE

No error class.

TTS_ERROR_CLASS_MODIFIER

Used with the asrp_set_error() function to provide additional information

about the error.

TTS_ERROR_CLASS_URL

112 Copyright © 2014, QNX Software Systems Limited

API Reference

The playback URL could not be resolved.

TTS_ERRROR_CLASS_RESOURCE

A required resource was unavailable.

TTS_ERROR_CLASS_SYNTHESIS

There was an error during TTS synthesis.

TTS_ERROR_CLASS_SYSTEM

There was a system-level error.

Library:

libasr

Description:

The tts_error_class_t enumeration lists the classes of errors that may occur

during speech processing. This information can be used to provide information to the

user and to populate error logs.

Functions in asrp.h

asrp_active_help()

Provide help prompts to the user.

Synopsis:

#include <asr/asrp.h>

void asrp_active_help(void)

Arguments:

None.

Library:

libasr

Description:

The asrp_active_help() function provides contextual help prompts to the user.

Copyright © 2014, QNX Software Systems Limited 113

asrp.h

Returns:

Nothing.

asrp_connect()

Connect to the prompt module.

Synopsis:

#include <asr/asrp.h>

asrp_module_hdl_t* asrp_connect(const asrp_module_interface_t *pmif, unsigned
 len, void *data)

Arguments:

pmif

The prompt module interface.

len

The size of the prompt module interface.

data

Data associated with the prompt module.

Library:

libasr

Description:

The asrp_connect() function connects to the prompt module and returns identifying

information about the recognizer via the data parameter.

Returns:

The prompt module handle.

asrp_get_status()

Get the prompt status.

Synopsis:

#include <asr/asrp.h>

114 Copyright © 2014, QNX Software Systems Limited

API Reference

asrp_processing_flags_t asrp_get_status(void)

Arguments:

None.

Library:

libasr

Description:

The asrp_get_status() returns the list of active prompts.

Returns:

Flags to indicate which prompts are active.

asrp_play_item()

Play the audio item at the specified configuration node.

Synopsis:

#include <asr/asrp.h>

asrp_processing_flags_t asrp_play_item(cfg_item_t *base, const char *item_path)

Arguments:

base

The configuration node to start at.

item_path

A '/' separated list of node names that leads to the required node.

Library:

libasr

Description:

The asrp_play_item() function resolves the specified configuration and path to a URL

and then plays the audio file specified by the URL.

Copyright © 2014, QNX Software Systems Limited 115

asrp.h

Returns:

Flags to indicate which, if any, prompts were rendered.

asrp_play_tts()

Play the specified text.

Synopsis:

#include <asr/asrp.h>

asrp_processing_flags_t asrp_play_tts(const char *fmt,...)
__attribute__((format(printf

Arguments:

fmt

The format string for the text. This may include tokens that will be replaced

by values of variable arguments appended to the end of the call.

Library:

libasr

Description:

The asrp_play_tts() function converts the specified text to speech and plays it back.

The text may take the form of a string literal or a variable.

Returns:

Flags to indicate which, if any, prompts were rendered.

asrp_play_tts_item()

Play the TTS item at the specified configuration node.

Synopsis:

#include <asr/asrp.h>

asrp_processing_flags_t asrp_processing_flags_t asrp_play_tts_item(cfg_item_t
 *base, const char *item_path)

Arguments:

base

The configuration node to start at.

116 Copyright © 2014, QNX Software Systems Limited

API Reference

item_path

A '/' separated list of node names that leads to the required node.

Library:

libasr

Description:

The asrp_play_tts_item() function resolves the specified configuration and path to a

URL and then plays the TTS item specified by the URL.

Returns:

Flags to indicate which, if any, prompts were rendered.

asrp_play_url()

Play the audio item at the specified URL.

Synopsis:

#include <asr/asrp.h>

asrp_processing_flags_t asrp_play_url(const char *url)

Arguments:

url

The URL of the resource to play.

Library:

libasr

Description:

The asrp_play_url() function plays the audio resource specified by the URL.

Returns:

Flags to indicate which, if any, prompts were rendered.

Copyright © 2014, QNX Software Systems Limited 117

asrp.h

asrp_reset()

Allow prompting after a stop.

Synopsis:

#include <asr/asrp.h>

void asrp_reset(void)

Arguments:

None.

Library:

libasr

Description:

The asrp_reset() function resets the prompt control flags to allow prompting again

after a call to asrp_stop().

Returns:

Nothing.

asrp_response_cb_t

Prompt response callback function.

Synopsis:

#include <asr/asrp.h>

typedef void(* asrp_response_cb_t)(int selection_index, cfg_item_t *payload);

Library:

libasr

Description:

The asrp_response_cb_t() function can be called from a prompt dialog (e.g., when the

user clicks OK).

118 Copyright © 2014, QNX Software Systems Limited

API Reference

asrp_section_help()

Provide help related to the specified configuration.

Synopsis:

#include <asr/asrp.h>

void asrp_section_help(cfg_item_t *base)

Arguments:

base

The configuration for the prompt module.

Library:

libasr

Description:

The asrp_section_help() function plays all the help URLs in the specified configuration.

Returns:

Nothing.

asrp_set_error()

Set error information.

Synopsis:

#include <asr/asrp.h>

void asrp_set_error(asrp_module_hdl_t *mod, tts_error_class_t error_class, int
 error, const char *description)

Arguments:

mod

The prompt module handle.

error_class

The class of the error that was encountered.

Copyright © 2014, QNX Software Systems Limited 119

asrp.h

error

An error code. See /usr/include/errno.h.

description

A description of the error.

Library:

libasr

Description:

The asrp_set_error() function writes error information to the log.

Returns:

Nothing.

asrp_slog()

Capture logging information for the prompt module.

Synopsis:

#include <asr/asrp.h>

int asrp_slog(asrp_module_hdl_t *mod, int severity, const char *fmt,...)
__attribute__((format(printf

Arguments:

mod

The prompt module handle.

severity

The severity of the condition that triggered the message. For more information

on severity levels, see slogf() in the QNX C Library Reference. Valid values

include:

• _SLOG_INFO

• _SLOG_WARN

• _SLOG_ERROR

• _SLOG_CRITICAL

120 Copyright © 2014, QNX Software Systems Limited

API Reference

fmt

The format string to print to the log buffer. This may include tokens that

will be replaced by values of variable arguments appended to the end of the

call. The max length of an expanded log message is 1024 characters (this

includes all format substitutions and the null terminator).

Library:

libasr

Description:

The asrp_slog() function sends debugging information to the appropriate log. Log

messages will be written to the log buffer only if their severity is greater than or equal

to the specified severity.

Returns:

0 Success.

<0 An error occurred.

asrp_start()

Request prompt service from registered prompt service providers.

Synopsis:

#include <asr/asrp.h>

asrp_processing_flags_t asrp_start(asrp_prompt_info_t *prompt_info)

Arguments:

prompt_info

Structure describing the prompt to be played or shown and providing an

interactive callback function if required (e.g., for an interactive visual

prompt).

Library:

libasr

Description:

The asrp_start() function renders the prompt specified by prompt_info.

Copyright © 2014, QNX Software Systems Limited 121

asrp.h

Returns:

Flags to indicate which, if any, prompts were rendered. A return value of 0

(ASRP_NO_PROMPTS) indicates that no prompts were rendered.

asrp_stop()

Stop active prompts.

Synopsis:

#include <asr/asrp.h>

asrp_processing_flags_t asrp_stop(asrp_processing_flags_t stop_services)

Arguments:

stop_services

The prompts to stop (audio and/or video).

Library:

libasr

Description:

The asrp_stop() function dismisses any visible prompts and stops playing audio

prompts.

Returns:

ASRP_NO_PROMPTS on success.

122 Copyright © 2014, QNX Software Systems Limited

API Reference

asrv.h

Functions for vendor-specific actions.

The asrv.h header file provides functions to interact with vendor-supplied modules.

Functions in asrv.h

asrv_audio_acquire_buffer()

Request an audio buffer.

Synopsis:

#include "asr/asrv.h"

int asrv_audio_acquire_buffer(char **buffer, int *bufflen, int *more_data)

Arguments:

buffer

The structure to store the audio sample.

bufflen

The size of the buffer.

more_data

An flag to indicate whether more data is available.

Library:

libasr

Description:

The asrv_audio_acquire_buffer() function requests a buffer.

Returns:

0 Capturing has finished. The buffer is available.

>0 Capturing is ongoing.

<0 An error ocurred.

Copyright © 2014, QNX Software Systems Limited 123

asrv.h

asrv_audio_close()

Close the audio module.

Synopsis:

#include "asr/asrv.h"

int asrv_audio_close()

Arguments:

Library:

libasr

Description:

The asrv_audio_close() function closes the current audio module.

Returns:

0 Success.

<0 An error occurred.

asrv_audio_open()

Open the audio module.

Synopsis:

#include "asr/asrv.h"

int asrv_audio_open()

Arguments:

Library:

libasr

Description:

The asrv_audio_open() function opens the current audio module.

Returns:

>=0 Success.

<0 An error occurred.

124 Copyright © 2014, QNX Software Systems Limited

API Reference

asrv_audio_relinquish_buffer()

Relinquish an audio buffer.

Synopsis:

#include "asr/asrv.h"

int asrv_audio_relinquish_buffer(char *buffer)

Arguments:

buffer

The structure that contains the buffer.

Library:

libasr

Description:

The asrv_audio_relinquish_buffer() function resets the buffer in the buffer structure

so that it can be used again.

Returns:

0 Success.

-1 An error occurred.

asrv_audio_set_parms()

Set the audio parameters for the module.

Synopsis:

#include "asr/asrv.h"

int asrv_audio_set_parms(int sample_rate, int volume, int frag_size)

Arguments:

sample_rate

The audio sample rate.

volume

Copyright © 2014, QNX Software Systems Limited 125

asrv.h

The audio volume.

frag_size

The audio fragment size.

Library:

libasr

Description:

The asrv_audio_set_params() function sets the global audio parameters.

Returns:

0 Success.

-1 An error occurred.

asrv_audio_start()

Start the audio module.

Synopsis:

#include "asr/asrv.h"

int asrv_audio_start()

Arguments:

Library:

libasr

Description:

The asrv_audio_start() function causes the module to begin to perform its particular

service, for example capturing audio or playing back from a file.

Returns:

0 Success.

-1 An error occurred.

126 Copyright © 2014, QNX Software Systems Limited

API Reference

asrv_audio_stop()

Stop the audio capture.

Synopsis:

#include "asr/asrv.h"

int asrv_audio_stop()

Arguments:

Library:

libasr

Description:

The asrv_audio_stop() function forces the audio capturing to stop.

Returns:

0 Success.

-1 An error occurred.

asrv_get_active_sections()

Return io-asr's active configuration sections.

Synopsis:

#include "asr/asrv.h"

int asrv_get_active_sections(char **sections[])

Arguments:

sections

A pointer to the sections (the active sections will be returned using this

pointer).

Library:

libasr

Description:

The asrv_get_active_sections() function returns io-asr's active configuration sections.

Copyright © 2014, QNX Software Systems Limited 127

asrv.h

Returns:

The number of active sections.

asrv_get_common_value()

Get the value for a specified key.

Synopsis:

#include "asr/asrm.h"

const char* asrv_get_common_value(const char *key)

Arguments:

key

The key string to search on (e.g., "locale").

Library:

libasr

Description:

The asrv_get_common_value() function finds the value of the configuration item

corresponding to the specified key and that matches at least one other configuration

item's value.

Returns:

The value of the configuration item; NULL if it isn't found.

asrv_get_context()

Get the active context.

Synopsis:

#include "asr/asrv.h"

int asrv_get_context(asr_context_hdl_t **chdl)

Arguments:

chdl

The context handle.

128 Copyright © 2014, QNX Software Systems Limited

API Reference

Library:

libasr

Description:

The asrv_get_context() function returns the preloaded context that the current exclusive

module has selected to use for recognition.

Returns:

1 on success.

0 if no context is active.

asrv_get_recognizer_sections()

Return io-asr's active recognizer configuration sections.

Synopsis:

#include "asr/asrv.h"

int asrv_get_recognizer_sections(char *name, cfg_item_t **recognizer_section[])

Arguments:

name

This parameter is currently not used.

recognizer_section

A pointer to the sections (the active sections will be returned using this

pointer).

Library:

libasr

Description:

The asrv_get_recognizer_sections() function returns io-asr's active recognizer-related

configuration sections.

Returns:

The number of sections returned.

Copyright © 2014, QNX Software Systems Limited 129

asrv.h

asrv_post_data()

Pass additional data for use with a result.

Synopsis:

#include "asr/asrv.h"

asr_result_action_t asrv_post_data(void *hdl, void *data, int error)

Arguments:

hdl

The recognizer handle.

data

The data or parameters to be passed to the module.

error

An error code. The error value is currently specific to the ASR vendor used

with io-asr.

Library:

libasr

Description:

The asrv_post_data() function specifies additional parameters or passes additional

data that the active module requires (i.e., not recognition results). For example, the

module may require a vendor-specific data format (e.g., a tracklist generated from a

find music command).

Returns:

The next action to take; NULL on error. See asr_result_action_t for the list of

actions.

130 Copyright © 2014, QNX Software Systems Limited

API Reference

asrv_post_result()

Handle results from recognizer.

Synopsis:

#include "asr/asrv.h"

asr_result_action_t asrv_post_result(void *hdl, asr_result_t *results)

Arguments:

hdl

The recognizer handle.

results

The results to post.

Library:

libasr

Description:

The asrv_post_result() function handles the specified recognition result. It ensures

ASR isn't on hold, selects the appropriate module, passes the result to the module for

actioning (the module's on_result() callback function is invoked), and returns the

action to take next.

Returns:

The next action to take.

asrv_post_step()

Post a recognition step.

Synopsis:

#include "asr/asrv.h"

void asrv_post_step(asr_step_t step)

Arguments:

step

Copyright © 2014, QNX Software Systems Limited 131

asrv.h

The step to post.

Library:

libasr

Description:

The asrv_post_step() function handles the specified step. In the case of an active

recognition turn it invokes the appropriate module's step() callback function.

Returns:

Nothing.

132 Copyright © 2014, QNX Software Systems Limited

API Reference

cfg.h

Data types and functions for setting up module configurations.

The cfg.h header file contains data types and functions for building and searching

a configuration tree. A configuration tree consists of configuration items. These items

carry configuration values that are read from configuration files.

Data types in cfg.h

cfg_encoder

The configuration encoder.

Synopsis:

struct cfg_encoder cfg_encoder_t {
 cfg_item_t * base ;
 cfg_item_t * container ;
};

Data:

cfg_item_t * base

The base configuration item, which can be used as the root of a new

configuration tree.

cfg_item_t * container

The container configuration item, which sometimes becomes a child node

of a base and sometimes is used to construct new configuration items for

other uses.

Library:

libasr

Description:

The configuration encoder is an interim structure used to encode configurations.

cfg_encoder_t

Alias for the configuration encoder.

Synopsis:

#include <asr/cfg.h>

Copyright © 2014, QNX Software Systems Limited 133

cfg.h

typedef struct cfg_encoder cfg_encoder_t;

Library:

libasr

Description:

This type is an alias for the configuration encoder, cfg_encoder.

cfg_item_t

A configuration item.

Synopsis:

#include <asr/cfg.h>

typedef struct cfg_item cfg_item_t;

Library:

libasr

Description:

This opaque type represtents a configuration item. Configuration items are linked

together to form a configuration tree, which represents the contents of a configuration

file (e.g., /etc/asr-car.cfg). Each configuration item represents a single value

from the configuration file.

Functions in cfg.h

cfg_add_item()

Add a new node to a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_add_item(cfg_item_t *current, const char *cname, const char
*cvalue)

Arguments:

current

A pointer to the node to add the new configuration item to. If NULL, the

new configuration item becomes the root of a new configuration tree.

134 Copyright © 2014, QNX Software Systems Limited

API Reference

cname

The name for the new node. If NULL, the name "anon" is assigned.

cvalue

The value for the new node. If NULL, an empty string is assigned.

Library:

libasr

Description:

The cfg_add_item() function creates a new configuration item with the specified name

(cname) and optional value (cvalue) and adds it as a child of the specified node

(current), behind its sibling nodes. Spaces and quotes are removed from the name

and value; any variable references are resolved before the new item is created.

Returns:

A pointer to the new node.

cfg_add_item_string()

Create a new node from a key and add it to a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_add_item_string(cfg_item_t *current, const char *ckey_value)

Arguments:

current

A pointer to the node to add the new configuration item to. If NULL, the

new configuration item becomes the root of a new configuration tree.

ckey_value

A string consisting of the name for the new node and optionally a value. If

NULL, the name "anon" is assigned, with an empty string assigned as the

value.

Copyright © 2014, QNX Software Systems Limited 135

cfg.h

Library:

libasr

Description:

The cfg_add_item_string() function creates a new a configuration item with the name

and optional value specified by ckey_value. If ckey_value contains a '{' character, it

will be removed from the assigned value. For example, the key string "mynode = special

{" becomes the key "mynode" and the value "special". The new item is added as a child

of the specified node (current), behind its sibling nodes.

Returns:

A pointer to the new node.

cfg_attach_item()

Detach an item from its current parent and attach it to another node.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_attach_item(cfg_item_t *parent, cfg_item_t *item, int tail)

Arguments:

parent

A pointer to the node to attach the item to.

item

A pointer to the item to attach to parent.

tail

Specifies whether the child is prepended (0) or appended (1) to the parent's

list of children.

Library:

libasr

Description:

The cfg_attach_item() function detaches the specified configuration item from its

parent and attaches it as a child to the specified node (parent). If parent is NULL,

136 Copyright © 2014, QNX Software Systems Limited

API Reference

this function is equivalent to cfg_detach_item(). If parent isn't NULL, tail specifies

whether the child is prepended (0) or appended (1) to the parent's list of children.

Returns:

A pointer to the item; NULL on error.

cfg_clear_item()

Delete the configuration tree under a node.

Synopsis:

#include <asr/cfg.h>

void cfg_clear_item(cfg_item_t *current)

Arguments:

current

A pointer to the configuration node. This pointer must not be NULL.

Library:

libasr

Description:

The cfg_clear_item() function destroys the tree rooted at current. It deletes all child

nodes under current and frees the associated memory. The current node is not

destroyed.

Returns:

Nothing. No errors are logged.

cfg_clone()

Copy one configuration tree into another.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_clone(cfg_item_t *parent, cfg_item_t *root)

Arguments:

parent

Copyright © 2014, QNX Software Systems Limited 137

cfg.h

A pointer to the configuration tree to add the clone to.

root

A pointer to the configuration tree to copy.

Library:

libasr

Description:

The cfg_clone() function copies the configuration tree specified by root into the

configuration tree and at the location specified by parent. The structure of the root

tree is maintained in the cloning operation.

Returns:

A pointer to the parent configuration tree on success, or NULL on error.

cfg_create()

Create a configuration item.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_create(const char *name)

Arguments:

name

The name to assign to the new configuration item.

Library:

libasr

Description:

The cfg_create() function creates a configuration item with the specified name.

Returns:

A pointer to the new configuration item.

138 Copyright © 2014, QNX Software Systems Limited

API Reference

cfg_delete_item()

Delete the configuration tree starting at a node.

Synopsis:

#include <asr/cfg.h>

void cfg_delete_item(cfg_item_t *current)

Arguments:

current

A pointer to the configuration node. This pointer must not be NULL.

Library:

libasr

Description:

The cfg_delete_item() function destroys the tree rooted at current. It deletes the current

node and all child nodes under it, freeing the associated memory.

Returns:

Nothing. No errors are logged.

cfg_destroy()

Destroy an entire configuration tree.

Synopsis:

#include <asr/cfg.h>

void cfg_destroy(cfg_item_t *node)

Arguments:

node

A pointer to a node in the configuration tree. This pointer must not be NULL.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 139

cfg.h

Description:

The cfg_destroy() function destroys the tree specified by node, which doesn't have to

be the root. This function finds the root of the tree, deletes all nodes including the

root, and frees the associated memory.

Returns:

Nothing. No errors are logged.

cfg_detach_item()

Detach an item from its current parent.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_detach_item(cfg_item_t *item)

Arguments:

item

A pointer to the item to detach.

Library:

libasr

Description:

The cfg_attach_item() function detaches the specified configuration item (item) from

its parent and corrects any references in the list of siblings, if any.

Returns:

A pointer to the item.

cfg_dup_resolved_item_value()

Find the specified configuration item and get its resolved values.

Synopsis:

#include <asr/cfg.h>

char* cfg_dup_resolved_item_value(const cfg_item_t *item, const char *item_path)

Arguments:

140 Copyright © 2014, QNX Software Systems Limited

API Reference

item

A pointer to the configuration item to begin the search from.

item_path

The path of the configuration item (e.g., "phone/digit-dialing")

Library:

libasr

Description:

The cfg_dup_resolved_item_value() function searches for the configuration item named

by item_path starting at the node item. If the item is found, it expands the variable

references and returns the resolved value.

Returns:

An allocated string with all the variable references expanded.

cfg_dup_resolved_string()

Get an item's resolved values relative to a node.

Synopsis:

#include <asr/cfg.h>

char* cfg_dup_resolved_string(const cfg_item_t *current, char *string)

Arguments:

current

A pointer to the node to use to expand variables.

string

The string to resolve.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 141

cfg.h

Description:

The cfg_dup_resolved_string() function expands the variable references in a

configuration item relative to the specified node and returns the resolved value.

Returns:

An allocated string with all the variable references expanded.

cfg_encoder_add_int()

Add a configuration item with an integer value to an encoder.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_encoder_add_int(cfg_encoder_t *e, const char *name, long long
 num)

Arguments:

e

A pointer to the encoder structure to add the new configuration item to.

name

The name of the new configuration item.

num

The integer value of the configuration item.

Library:

libasr

Description:

The cfg_encoder_add_int() function creates a new configuration item with the specified

name and integer value and adds it as a child of the encoder container (after any other

child nodes).

Returns:

A pointer to the new configuration item.

142 Copyright © 2014, QNX Software Systems Limited

API Reference

cfg_encoder_add_raw_string()

Add a configuration item with a string value to an encoder.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_encoder_add_raw_string(cfg_encoder_t *e, const char *name,
const char *value)

Arguments:

e

A pointer to the encoder structure to add the new configuration item to.

name

The name of the new configuration item.

value

The string value of the configuration item.

Library:

libasr

Description:

The cfg_encoder_add_string() function creates a new configuration item with the

specified name and string value and adds it as a child of the encoder container (after

any other child nodes). Spaces and quotes are removed from the name, but the value

is used as specified.

Returns:

A pointer to the new configuration item.

cfg_encoder_add_string()

Add a configuration item with a string value to an encoder.

Synopsis:

#include <asr/cfg.h>

Copyright © 2014, QNX Software Systems Limited 143

cfg.h

cfg_item_t* cfg_encoder_add_string(cfg_encoder_t *e, const char *name, const
char *value)

Arguments:

e

A pointer to the encoder structure to add the new configuration item to.

name

The name of the new configuration item.

value

The string value of the configuration item.

Library:

libasr

Description:

The cfg_encoder_add_string() function creates a new configuration item with the

specified name and string value and adds it as a child of the encoder container (after

any other child nodes). Spaces and quotes are removed from the name and value

before the configuration item is created.

Returns:

A pointer to the new configuration item.

cfg_encoder_attach()

Attach a configuration item to an existing configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_encoder_attach(cfg_encoder_t *e, cfg_item_t *attach, char
*name)

Arguments:

e

A pointer to an encoder structure.

144 Copyright © 2014, QNX Software Systems Limited

API Reference

attach

A pointer to the configuration node to add the new item to.

name

The name of the new configuration item.

Library:

libasr

Description:

The cfg_encoder_attach() function creates a new configuration item with the specified

name and adds it as a child of the specifed node, attach, behind any existing child

nodes. On return, the base and container of the encoder, e, points to the new

configuration item.

Returns:

e->base, the base of the specified encoder (which points to the new tree).

cfg_encoder_cleanup()

Clean up an encoder.

Synopsis:

#include <asr/cfg.h>

void cfg_encoder_cleanup(cfg_encoder_t *e)

Arguments:

e

A pointer to the encoder to clean up.

Library:

libasr

Description:

The cfg_encoder_cleanup() function deletes the base configuration item of the specified

encoder, and also zeroes all memory utilized by the encoder structure.

Copyright © 2014, QNX Software Systems Limited 145

cfg.h

Returns:

Nothing.

cfg_encoder_end_object()

Finish creating a new configuration item using the specified encoder.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_encoder_end_object(cfg_encoder_t *e)

Arguments:

e

A pointer to the encoder structure indicating the new configuration item.

Library:

libasr

Description:

The cfg_encoder_end_object() function returns the parent of the configuration item

indicated by e->container. If there is no parent, e->container is returned.

Returns:

e->container, the container of the specified encoder (which points either to the new

configuration item or to its parent).

cfg_encoder_init()

Create a new configuration item.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_encoder_init(cfg_encoder_t *e, const char *name)

Arguments:

e

A pointer to the encoder that contains the items to construct the tree from.

146 Copyright © 2014, QNX Software Systems Limited

API Reference

name

The name of the child item.

Library:

libasr

Description:

The cfg_encoder_init() function creates a new configuration tree from the specified

configuration encoder with the specified name. The encoder base is the root of the

new tree. A new configuration item with name is added as a child of the root. On

return, the base of the encoder points to the root of the new tree; the container points

to the new configuration item.

Returns:

e->base, the base of the specified encoder (which points to the new tree).

cfg_encoder_start_object()

Create a new configuration item using the specified encoder.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_encoder_start_object(cfg_encoder_t *e, const char *name, const
 char *value)

Arguments:

e

A pointer to the encoder structure.

name

The name of the new configuration item.

value

The value of the new configuration item.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 147

cfg.h

Description:

The cfg_encoder_start_object() function creates a new configuration item with the

specified name and value, and then adds it as a child of the node indicated by the

specified encoder's container (e->container). If e->container is NULL, it becomes a

single configuration item.

Returns:

e->container, the container of the specified encoder (which points to the new

configuration item).

cfg_find_higher_item()

Find a node higher in a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_find_higher_item(const cfg_item_t *current, const char *key)

Arguments:

current

A pointer to the node to begin the search in.

key

A '/' separated list of node names to search for.

Library:

libasr

Description:

The cfg_find_higher_item() function performs a restricted search for a node with key,

starting with current and its sibling nodes, and then moving up to the parent of current,

the siblings of the parent of current, and so on.

Returns:

A pointer to the matching configuration node; NULL if the item wasn't found.

148 Copyright © 2014, QNX Software Systems Limited

API Reference

cfg_find_item()

Find a node in a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_find_item(const cfg_item_t *node, const char *cname, int levels)

Arguments:

node

A pointer to the node to begin the search in.

cname

A '/' separated list of node names that leads to the desired node.

levels

Indicates how high up the hiearchy the search will go (0 = siblings only; -1

= all the way to the root).

Library:

libasr

Description:

The cfg_find_item() function performs a restricted hiearchical search starting at node

for a node with cname. For example, if cname is "phone/digit-dialing", cfg_find_item()

searches for the "phone" node within the subtree of node, and then searches for the

"digit-dialing" node within the "phone" node.

Returns:

A pointer to the matching configuration node; NULL if the item wasn't found.

cfg_find_next_item()

Find a node in a configuration tree.

Synopsis:

#include <asr/cfg.h>

Copyright © 2014, QNX Software Systems Limited 149

cfg.h

cfg_item_t* cfg_find_next_item(const cfg_item_t *base, const cfg_item_t
*current, const char *key, int levels)

Arguments:

base

A pointer to the parent of the current node (used only if current == NULL)

current

NULL or the result of a previous call to cfg_find_node() or

cfg_find_next_node().

key

A '/' separated list of node names to search for.

levels

Indicates how high up the hiearchy the search will go (0 = siblings only; -1

= all the way to the root).

Library:

libasr

Description:

The cfg_find_next_item() function performs a restricted hiearchical search for a node

with cname. For example, if key is "phone/digit-dialing", cfg_find_next_item() searches

for the "phone" node within the subtree of node, and then searches for the "digit-dialing"

node within the "phone" node.

Returns:

A pointer to the next node with a matching key; NULL if the item wasn't found.

cfg_find_num()

Return the integer value of a node in a configuration tree.

Synopsis:

#include <asr/cfg.h>

long long cfg_find_num(const cfg_item_t *node, const char *key, long long
default_num)

150 Copyright © 2014, QNX Software Systems Limited

API Reference

Arguments:

node

A pointer to the node to start the search from.

key

A '/' separated list of node names to search for.

default_num

An integer to return if the specified key isn't found.

Library:

libasr

Description:

The cfg_find_num() function invokes the cfg_find_item() function to search a

configuration tree for a node that matches key, starting at node. If a match is found,

its integer value is returned.

Returns:

The integer value of the matching configuration node; default_num if the item wasn't

found.

cfg_find_predefined_item()

Find a node earlier in a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_find_predefined_item(const cfg_item_t *base, const char *key,
 int levels)

Arguments:

base

A pointer to the node to begin the search in.

key

Copyright © 2014, QNX Software Systems Limited 151

cfg.h

A '/' separated list of node names to search for.

levels

Indicates how high up the hiearchy the search will go (0 = siblings only; -1

= all the way to the root).

Library:

libasr

Description:

The cfg_find_predefined_item() function performs a restricted search for a node with

key, starting with the previous siblings of base, and then moving up to the parent of

base, the previous siblings of the parent of base, and so on.

Returns:

A pointer to the matching configuration node; NULL if the item wasn't found.

cfg_find_value()

Return the string value of a node in a configuration tree.

Synopsis:

#include <asr/cfg.h>

char* cfg_find_value(const cfg_item_t *node, const char *key)

Arguments:

node

A pointer to the node to start the search from.

key

A '/' separated list of node names to search for.

Library:

libasr

152 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

The cfg_find_value() function invokes the cfg_find_item() function to search a

configuration tree for a node that matches key, starting at node. If a match is found,

its string value is returned.

Returns:

The string value of the matching configuration node; NULL if the item wasn't found.

cfg_get_explicit_value()

Get the value of the specified item.

Synopsis:

#include <asr/cfg.h>

char* cfg_get_explicit_value(const cfg_item_t *item)

Arguments:

item

A pointer to the configuration item.

Library:

libasr

Description:

The cfg_get_explicit_value() function returns the value of the specified configuration

item.

Returns:

The value string of the specified item, or NULL if item is NULL. If there is no value

a pointer to a string terminator ('\0') is returned.

cfg_get_key()

Get the key of the specified configuration item.

Synopsis:

#include <asr/cfg.h>

char* cfg_get_key(const cfg_item_t *item)

Arguments:

Copyright © 2014, QNX Software Systems Limited 153

cfg.h

item

A pointer to the configuration item.

Library:

libasr

Description:

The cfg_get_key() function returns a pointer to the key of the specified configuration

item.

Returns:

A pointer to the key string of the specified item; NULL if item is NULL.

cfg_get_next_item()

Get a node's next item.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_get_next_item(const cfg_item_t *base, const cfg_item_t *current)

Arguments:

base

A pointer to the parent of current. Must not be NULL.

current

A pointer to the node whose next node is required. Can be NULL.

Library:

libasr

Description:

The cfg_get_next_item() function returns the next item of current or the first child of

base if current is NULL. Note that the first child of base might be NULL.

Returns:

A pointer to either the current node's next sibling or the first child of base.

154 Copyright © 2014, QNX Software Systems Limited

API Reference

cfg_get_num()

Get the integer value of the specified configuration item.

Synopsis:

#include <asr/cfg.h>

long long cfg_get_num(const cfg_item_t *item)

Arguments:

item

A pointer to the configuration item.

Library:

libasr

Description:

The cfg_get_num() function returns the integer value of the specified configuration

item.

Returns:

The value of the specified configuration item, converted to an integer.

cfg_get_parent()

Get the parent of the specified item.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_get_parent(const cfg_item_t *current)

Arguments:

current

A pointer to the configuration item.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 155

cfg.h

Description:

The cfg_get_parent() function returns the parent of the specified configuration item.

Returns:

A pointer to the parent of current. NULL if current is NULL or has no parent.

cfg_get_value()

Get the value of the specifed configuration item.

Synopsis:

#include <asr/cfg.h>

char* cfg_get_value(const cfg_item_t *item)

Arguments:

item

A pointer to the configuration item.

Library:

libasr

Description:

The cfg_get_key function gets the string value of the specified item. If item has no

value, the key is returned.

Returns:

A pointer to the string value of the specified item; a pointer to the item's key if the

item has no value; NULL if item is NULL.

cfg_insert_item()

Insert a node in a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_insert_item(cfg_item_t *current, const char *ckey, const char
 *cvalue)

Arguments:

156 Copyright © 2014, QNX Software Systems Limited

API Reference

current

A pointer to the node to add the new configuration item to. If NULL, the

new configuration item becomes the root of a new configuration tree.

ckey

The name for the new node. If NULL, the name "anon" is assigned.

cvalue

The value for the new node. If NULL, an empty string is assigned.

Library:

libasr

Description:

The cfg_insert_item() function creates a new a configuration item with the specifed

name (ckey) and optional value (cvalue). Spaces and quotes are removed from the

name and the value; any variable references are resolved before the new item is created.

The new item is added as a child of the specified node (current), in front of its sibling

nodes.

Returns:

A pointer to the new node.

cfg_insert_raw_item()

Insert a node in a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_insert_raw_item(cfg_item_t *current, const char *ckey, const
char *cvalue)

Arguments:

current

The node to add the new configuration item to. If NULL, the new

configuration item becomes the root of a new configuration tree.

Copyright © 2014, QNX Software Systems Limited 157

cfg.h

ckey

The name for the new node. If NULL, the name "anon" is assigned.

cvalue

The value for the new node. If NULL, an empty string is assigned.

Library:

libasr

Description:

The cfg_insert_raw_item() function creates a new a configuration item with the specifed

name (ckey) and optional value (cvalue). Spaces and quotes are removed from the

name, but the value is used as specified. The new item is added as a child of the

specified node (current), behind its sibling nodes.

Returns:

A pointer to the new node.

cfg_load()

Load a configuration file.

Synopsis:

#include <asr/cfg.h>

int cfg_load(cfg_item_t *base, const char *path)

Arguments:

base

A pointer to the configuration node (usually the root) to populate.

path

The filepath to the configuration file to load.

Library:

libasr

158 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

The cfg_load() function populates the specified configuration tree, base, with the

contents of the configuration file specified by path. The base configuration tree isn't

cleared prior to this operation, so the nodes specified within path are merged into

base. Note that duplicate configuration items are permitted, so loading a configuration

file twice will yield double entries.

Returns:

0 Success.

-1 An error occurred.

cfg_merge()

Move configuration nodes from a doner to a new parent node.

Synopsis:

#include <asr/cfg.h>

void cfg_merge(cfg_item_t *parent, cfg_item_t *doner)

Arguments:

parent

A pointer to the node to attach the item to.

doner

A pointer to the node whose next item will be moved to the new parent.

Library:

libasr

Description:

The cfg_merge() function removes the doner node's next item (along with its children)

and attaches it as a child of the specified node (parent).

Returns:

Nothing.

Copyright © 2014, QNX Software Systems Limited 159

cfg.h

cfg_replace_item()

Replace a node in a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_replace_item(cfg_item_t *base, const char *ckey, const char
*new_value)

Arguments:

base

A pointer to the root of the configuration tree to search.

ckey

The key of the node to search for.

new_value

The value of the replacement node.

Library:

libasr

Description:

The cfg_replace_item() function deletes the first node under base with the key ckey.

It then inserts a new node with the key ckey and value new_value as a child of base,

in front of its sibling nodes.

Returns:

A pointer to the new configuration item.

cfg_resolve_value()

Get the resolved values of the specified configuration item.

Synopsis:

#include <asr/cfg.h>

char* cfg_resolve_value(const cfg_item_t *item)

160 Copyright © 2014, QNX Software Systems Limited

API Reference

Arguments:

item

A pointer to the configuration item.

Library:

libasr

Description:

The cfg_resolve_value() function expands the variable references in a configuration

item and returns the resolved value. For example, the item "prompt-dir = $(base-

dir)/prompt" becomes "prompt-dir = /opt/asr/prompt".

Returns:

An allocated string with all the variable references expanded.

cfg_traverse()

Return the next node in a depth-first traversal of a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_traverse(const cfg_item_t *base, const cfg_item_t *current)

Arguments:

base

A pointer to the base of the configuration tree.

current

A pointer to the current node of the configuration tree.

Library:

libasr

Description:

The cfg_traverse() function returns subsequent items in a depth-first traversal of the

configuration tree rooted at base. To traverse the tree, you call cfg_traverse() repeatedly,

each time passing the result of the previous call as current. cfg_traverse() returns

Copyright © 2014, QNX Software Systems Limited 161

cfg.h

NULL if current is equal to base (i.e., base was returned by the last call), indicating

the traversal is complete.

Returns:

A pointer to the next node in the traversal of the configuration tree.

cfg_traverse_items()

Return the next node in a depth-first traversal of a configuration tree.

Synopsis:

#include <asr/cfg.h>

cfg_item_t* cfg_traverse_items(const cfg_item_t *base, const cfg_item_t
*current, const char *key)

Arguments:

base

A pointer to the base of the configuration tree.

current

A pointer to the current node of the configuration tree.

key

The key value to match during the traversal.

Library:

libasr

Description:

The cfg_traverse_items() function returns subsequent items that match key in a

depth-first traversal of the configuration tree rooted at base. To traverse the tree, you

call cfg_traverse_items() repeatedly, each time passing the result of the previous call

as current. The cfg_traverse_items() function returns NULL when the traversal is

complete.

Returns:

A pointer to the next matching node in the traversal of the configuration tree.

162 Copyright © 2014, QNX Software Systems Limited

API Reference

find_quote()

Find a double quote character in a string.

Synopsis:

#include <asr/cfg.h>

char* find_quote(char *start)

Arguments:

start

The string to search.

Library:

libasr

Description:

The remove_quotes() function find the first double quote character in the specified

string.

Returns:

A pointer to the double quote character.

remove_quotes()

Remove double quotes from a string.

Synopsis:

#include <asr/cfg.h>

char* remove_quotes(char *string)

Arguments:

string

The string to remove quotes from.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 163

cfg.h

Description:

The remove_quotes() function removes double-quote characters from the beginning

and end of the specified string. For example, "mystring" becomes mystring.

Returns:

The resulting string.

strip_escapes()

Remove escape characters from a string.

Synopsis:

#include <asr/cfg.h>

char* strip_escapes(char *string)

Arguments:

string

The string to remove quotes from.

Library:

libasr

Description:

The strip_escapes() function removes one level of escape characters from the specified

string. For example, "The music you specified can\'t be found" becomes

"The music you specified can't be found".

Returns:

The resulting string.

strip_white()

Strip spaces from the beginning and end of a string.

Synopsis:

#include <asr/cfg.h>

char* strip_white(char *buffer)

Arguments:

164 Copyright © 2014, QNX Software Systems Limited

API Reference

buffer

The string to strip spaces from.

Library:

libasr

Description:

The strip_white() function removes spaces from the beginning and end of the specified

string.

Returns:

The resulting string.

Copyright © 2014, QNX Software Systems Limited 165

cfg.h

mod_types.h

Data types and functions for the audio, recognition, and conversation modules.

The mod_types.h header file provides data type definitions and functions for the

audio, recognition, and conversation modules.

Definitions in mod_types.h

Preprocessor macro definitions for the mod_types.h header file in the libasr library.

Definitions:

#define ASR_VERSION "0.9"

The ASR version.

#define MAX_SLOT_UPDATE 200;

The maximum number of slot updates allowed.

#define MAX_TRANSCRIPTIONS 5;

The maximum number of transcriptions allowed.

Library:

libasr

Data types in mod_types.h

asr_audio_info

Audio capture information.

Synopsis:

typedef struct asr_audio_info {
 uint8_t * buffer ;
 int buffer_len ;
 int sample_size ;
 int sample_rate ;
 int channels ;
}asr_audio_info_t;

Data:

uint8_t * buffer

The buffer to carry the audio samples.

int buffer_len

166 Copyright © 2014, QNX Software Systems Limited

API Reference

The length of the buffer.

int sample_size

The number of bits per sample.

int sample_rate

The sample rate.

int channels

The number of channels.

Library:

libasr

Description:

This structure carries the audio capture properties.

asr_audio_info_t

Alias for the audio capture information.

Synopsis:

#include "asr/mod_types.h"

typedef struct asr_audio_info asr_audio_info_t;

Library:

libasr

Description:

This type is an alias for the audio capture information type, asr_audio_info.

asr_context_hdl_t

The context handle.

Synopsis:

#include "asr/mod_types.h"

typedef struct asr_context_hdl asr_context_hdl_t;

Copyright © 2014, QNX Software Systems Limited 167

mod_types.h

Library:

libasr

Description:

This type is an alias for the context handle, asr_context_hdl.

asr_conversation_if

Conversation module interface.

Synopsis:

struct asr_conversation_if asr_conversation_if_t {
 const char * name ;
 const char * asr_version ;
 int localized ;
 int(* init)(void *module_data, cfg_item_t *asr_config);
 void(* destroy)(void *module_data);
 int(* on_asr_step)(asr_step_t step, void *module_data);
 int(* select_result)(asr_result_t *results, void *module_data, asr_result_t
 **selected_result);
 asr_result_action_t(* on_result)(asr_result_t *result, asr_result_t
*results, void *module_data);
 asr_result_action_t(* on_result_data)(void *result, void *module_data,
int error);
 void(* stop)(void);
};

Data:

const char * name

The name of this module.

const char * asr_version

The version of ASR that this module was designed for.

The version number is used to prevent newer, incompatible modules from

being used with an older build of ASR.

int localized

Indicates whether localized assets (TTS prompts, commands, etc.) are

required.

Set to 0 if no localized assets are needed.

int(* init)(void *module_data, cfg_item_t *asr_config)

Initialize the specified module.

168 Copyright © 2014, QNX Software Systems Limited

API Reference

Optional. The io-asr service calls init() for each registered module upon

startup.

Arguments

• module_data The data provided to io-asr when the module registered

itself.

• asr_config Configuration information for the converstaion module.

Returns

• 0 Success

• -1 An error occurred. The io-asr service logs the error and exits.

void(* destroy)(void *module_data)

Destroy a module.

Optional. The io-asr service calls destroy() when shutting down a module

that has successfuly initialized via the init() function.

Arguments

• module_data The data provided to io-asr when the module registered

itself.

int(* on_asr_step)(asr_step_t step, void *module_data)

Handle a change of state.

Optional. The io-asr service calls on_asr_step() each time the state of the

recognizer changes (see asr_step_t).

Arguments

• step The current or last event that occurred on the recognizer.

• module_data The data provided to io-asr when the module registered

itself.

Returns

• 0 Success.

• -1 An error occurred. The io-asr service logs the error and exits.

int(* select_result)(asr_result_t *results, void *module_data, asr_result_t **selected_result)

Select a recognition result from active modules.

Copyright © 2014, QNX Software Systems Limited 169

mod_types.h

Optional. The io-asr service calls select_result() for the current exclusive

module if there is one; otherwise, io-asr makes the call for all active

registered modules. If a result is selected, it is returned via selected_result.

Arguments

• results A list of results containing the hypotheses from the current

recognition.

• module_data The data provided to io-asr when the module registered

itself.

• selected_result A pointer to the result most suited for the module.

The io-asr service treats as valid any result with a return value greater

than -1.

Returns

• > -1 if a result is selected; -1 if no result is selected.

asr_result_action_t(* on_result)(asr_result_t *result, asr_result_t *results, void *module_data)

Handle a selected result.

Optional. The io-asr service calls on_result() for a module only if no other

module has a result with a higher confidence level. Results found to be

relevant to this module won't be processed if this function isn't defined.

Arguments

• result A reference to the selected result within the results list.

• results The full list of results.

• module_data The data provided to io-asr when the module registered

itself.

Returns

• The next action to take. See asr_result_action_t for the list of

actions.

asr_result_action_t(* on_result_data)(void *result, void *module_data, int error)

Pass additional data for use with a result.

Optional. The io-asr service calls on_result_data() to specify additional

parameters or pass additional data that the module requires (i.e., not

recognition results). For example, the module may require a vendor-specific

data format (e.g., a tracklist generated from a find music command).

170 Copyright © 2014, QNX Software Systems Limited

API Reference

Arguments

• module_data The data or parameters to be passed to the module.

• error An error code. The error value is currently specific to the ASR

vendor used with io-asr.

Returns

• The next action to take; NULL on error. See asr_result_action_t

for the list of actions.

void(* stop)(void)

Stop the module.

Optional. The io-asr service calls stop() if the speech session is canceled

before an on_result() callback has completed. This callback can be useful

to break out of any function that blocks for an extended period of time in

the on_result() callback. A new speech session can't be started until the

on_result() callback returns.

Library:

libasr

Description:

This structure defines the interface from io-asr to the conversation modules. Each

conversation module's constructor function passes this structure to the asrm_connect()

(p. 68) function. The io-asr service invokes the member callback functions depending

on the state of the module.

asr_conversation_if_t

Alias for the conversation module interface.

Synopsis:

#include "asr/mod_types.h"

typedef struct asr_conversation_if asr_conversation_if_t;

Library:

libasr

Description:

This type is an alias for the conversation module interface, asr_conversation_if.

Copyright © 2014, QNX Software Systems Limited 171

mod_types.h

asr_module_hdl_t

The module handle.

Synopsis:

#include "asr/mod_types.h"

typedef struct asr_module_hdl asr_module_hdl_t;

Library:

libasr

Description:

This opaque type represents the module handle. The module handle is used internally

by io-asr to manage data passed between the modules.

asr_recognizer_hdl_t

An alias for the recognizer handle, asr_recognizer_hdl.

Synopsis:

#include "asr/mod_types.h"

typedef struct asr_recognizer_hdl asr_recognizer_hdl_t;

Library:

libasr

Description:

This type is an alias for the opaque recognizer handle, asr_recognizer_hdl.

asr_recognizer_if

The recognizer interface.

Synopsis:

struct asr_recognizer_if asr_recognizer_if_t {
 const char * name ;
 const char * version ;
 int(* init)(cfg_item_t *config_base);
 int(* cleanup)();
 int(* start)();
 int(* stop)();
 void(* step)(asr_step_t step);
 asr_context_hdl_t *(* context_create)(cfg_item_t *cfg);
 int(* context_save)(asr_context_hdl_t *hdl, cfg_item_t *cfg);
 int(* context_add_entries)(asr_context_hdl_t *hdl, cfg_item_t *cfg, const
 char *slot_identifier, asr_slot_entry_t *slot_entry, int num_slot_entries);
 int(* context_delete_entries)(asr_context_hdl_t *hdl, cfg_item_t *cfg,
const char *slot_identifier, asr_slot_entry_t *slot_entry, int

172 Copyright © 2014, QNX Software Systems Limited

API Reference

num_slot_entries);
 int(* context_destroy)(asr_context_hdl_t *hdl);
 int(* get_utterance)(asr_audio_info_t *audio_info);
 int(* set_utterance)(asr_audio_info_t *audio_info, uint32_t offset_ms);
};

Data:

const char * name

The name of the module.

const char * version

The version of ASR that this module was designed for.

The version number is used to prevent newer, incompatible modules from

being used with an older build of ASR.

int(* init)(cfg_item_t *config_base)

Initialize the module.

The io-asr service calls init() for each registered module on startup. The

init() function sets the recognizer properties. The properties that are required

vary by vendor.

Arguments

• config_base Configuration data for this recognizer. See cfg_item_t (p.

134).

Returns

• 0 Success.

• <0 An error occurred.

int(* cleanup)()

Clean up memory and data after shutting down a module.

The io-asr service calls cleanup() after shutting down a module to release

any memory, destroy mutexes or condvars, or handle any data that must be

changed as a result of the module shutting down. The exact requirements

of the cleanup vary by vendor.

Returns

• 0 Success.

• <0 An error occurred.

Copyright © 2014, QNX Software Systems Limited 173

mod_types.h

int(* start)()

Start the module.

The io-asr service calls start() to start a recognition request. The recognizer

should collect and process the audio sample, and then provide status and

results via the API defined in the ASR vendor interface, asrv.h. This call

must be asynchronous and the recognition operation started must be

interuptable via a call to the stop() callback.

Returns

• 0 Success.

• <0 An error occurred.

int(* stop)()

Stop the module.

The io-asr service calls stop() to stop the current recognition operation.

The recognizer stops audio acquisition and stops processing results.

Returns

• 0 Success.

• <0 An error occurred.

void(* step)(asr_step_t step)

Handle a recognition step.

The io-asr service calls step() when the module's current step changes.

The step() function takes the appropriate action depending on what the step

is.

Arguments

• step The step to handle.

Returns

• 0 Success.

• <0 An error occurred.

asr_context_hdl_t *(* context_create)(cfg_item_t *cfg)

Create a context.

174 Copyright © 2014, QNX Software Systems Limited

API Reference

The io-asr service calls context_create() during the recognition process

to create a recognition context.

Arguments

• cfg The configuration structure for the recognizer.

Returns

• A pointer to the new context handle on success.

int(* context_save)(asr_context_hdl_t *hdl, cfg_item_t *cfg)

Save a context.

After io-asr has created a context by invoking context_create(), it calls

context_save() to save the context in the recognizer's required format, which

varies by vendor.

Arguments

• hdl The context handle.

• cfg The configuration structure for the recognizer.

Returns

• 0 Success.

• <0 An error occurred.

int(* context_add_entries)(asr_context_hdl_t *hdl, cfg_item_t *cfg, const char *slot_identifier,

asr_slot_entry_t *slot_entry, int num_slot_entries)

Add entries to the specified context.

The io-asr service calls context_add_entries() to add additional entries to

the specified context.

Arguments

• hdl A pointer to the context handle.

• cfg A pointer to the configuration associated with the context.

• slot_identifier A pointer to the slot identifier (the position of the

new entry).

• slot_entry A pointer to the array of new entries.

• num_slot_entries The number of entries to add.

Returns

Copyright © 2014, QNX Software Systems Limited 175

mod_types.h

• 0 Success.

• <0 An error occurred.

int(* context_delete_entries)(asr_context_hdl_t *hdl, cfg_item_t *cfg, const char *slot_identifier,

asr_slot_entry_t *slot_entry, int num_slot_entries)

Delete entries from the specified context.

The io-asr service calls context_delete_entries() to remove entries from

the specified context.

Arguments

• hdl A pointer to the context handle.

• cfg A pointer to the configuration associated with the context.

• slot_identifier A pointer to the slot identifier (the position of the

entry).

• slot_entry A pointer to the entry.

• num_slot_entries The number of entries to delete.

Returns

• 0 Success.

• <0 An error occurred.

int(* context_destroy)(asr_context_hdl_t *hdl)

Destroy the specified context.

The io-asr service calls context_destroy() to destroy a context.

Arguments

• hdl A pointer to the context handle.

Returns

• 0 Success.

• <0 An error occurred.

int(* get_utterance)(asr_audio_info_t *audio_info)

Capture an utterance.

The get_utterance() function stores an audio sample in the buffer referenced

by the info parameter. It also sets the associated properties of the utterance:

176 Copyright © 2014, QNX Software Systems Limited

API Reference

buffer size, sample size, sample rate, and number of channels. The

get_utterance function waits until the audio capture has completed before

copying the sample and returning.

Arguments

• audio_info Indicates the structure in which to store the utterance and

set the properties.

Returns

• 0 Success.

• -1 An error occurred.

int(* set_utterance)(asr_audio_info_t *audio_info, uint32_t offset_ms)

Copy an utterance to the specified buffer.

The set_utterance() function copies the last captured audio sample to the

buffer referenced by the info parameter, at the offset specified by the

offset_ms parameter. The sample size, sample rate, and number of channels

must match the properties of the captured sample. If the requested offset

results in a buffer overrun, an error is returned. If the audio capture has not

completed, an error is returned.

Arguments

• audio_info Indicates the structure in which to store the utterance.

• offset_ms The offset (in milliseconds) of the utterance.

Returns

• 0 Success.

• EBUSY Capture has not completed.

• EINVAL The audio properties don't match.

• ERANGE Buffer overrun.

Library:

libasr

Description:

The recognizer interface provides functions to io-asr for managing speech-to-text

processing. Each recognizer module's constructor function passes this structure to

asr_connect() (p. 186).

Copyright © 2014, QNX Software Systems Limited 177

mod_types.h

asr_recognizer_if_t

An alias for the recognizer interface, asr_recognizer_if.

Synopsis:

#include "asr/mod_types.h"

typedef struct asr_recognizer_if asr_recognizer_if_t;

Library:

libasr

Description:

This type is an alias for the recognizer interface, asr_recognizer_if

asr_slot_entry

A transcription slot entry.

Synopsis:

typedef struct asr_slot_entry {
 char * word ;
 uint64_t id ;
 asr_transcription_t * transcription ;
 size_t num_transcriptions ;
}asr_slot_entry_t;

Data:

char * word

The word buffer.

uint64_t id

The ID of the entry.

asr_transcription_t * transcription

A pointer to the transcriptions for this entry.

size_t num_transcriptions

The number of transcriptions for this entry.

Library:

libasr

178 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

A slot entry is used internally by the ASR sub-system to manage context slots. The

word buffer contains the terminal string associated with the slot. There are no

restrictions on the contents of the word buffer. The asr_slot_entry_t structure

is a member of the structure _Entry (p. 192) stucture in slot-factory.h

asr_slot_entry_t

Alias for the transcription slot entry type.

Synopsis:

#include "asr/mod_types.h"

typedef struct asr_slot_entry asr_slot_entry_t;

Library:

libasr

Description:

This type is an alias for the transcription slot entry type, asr_slot_entry.

asr_transcription_s

The transcription type.

Synopsis:

typedef struct asr_transcription_s {
 int type ;
 void * data ;
 size_t data_len ;
}asr_transcription_t;

Data:

int type

The type of the transcription.

void * data

A pointer to the transcriptions.

size_t data_len

The length of the data.

Copyright © 2014, QNX Software Systems Limited 179

mod_types.h

Library:

libasr

Description:

A transcription represents the different ways a context entry word can be spelled. The

transcription is associated with a slot entry and is used to update a recognizer context

with additional speech information (e.g., names from a phonebook for voice dialing).

asr_transcription_t

Alias for the transcription type.

Synopsis:

#include "asr/mod_types.h"

typedef struct asr_transcription_s asr_transcription_t;

Library:

libasr

Description:

This type is an alias for the transcription type, asr_transcription_s.

asra_module_interface

Audio module interface.

Synopsis:

struct asra_module_interface asra_module_interface_t {
 const char * name ;
 const char * version ;
 int(* init)(cfg_item_t *asr_config);
 void(* destroy)();
 int(* rate)(const char *url);
 void(* unrate)();
 int(* set_params)();
 int(* open)();
 int(* start)();
 int(* acquire_buffer)(asr_audio_info_t *info, int wait);
 void(* relinquish_buffer)(asr_audio_info_t *info);
 int(* get_utterance)(asr_audio_info_t *info);
 int(* set_utterance)(asr_audio_info_t *info, int offset_ms);
 int(* save_wavefile)(const char *fname);
 int(* stop)();
 int(* close)();
};

Data:

const char * name

The name of the module.

180 Copyright © 2014, QNX Software Systems Limited

API Reference

const char * version

The version of ASR that this module was designed for.

The version number is used to prevent newer, incompatible modules from

being used with an older build of ASR.

int(* init)(cfg_item_t *asr_config)

Initialize the specified module.

The io-asr service calls init() for each registered module on startup. The

init() function sets the audio properties.

Arguments

• asr_config ASR configuration information (such as the sample rate,

number of channels sample size, and so on. The required settings depend

on the vendor implementation). See cfg_item_t (p. 134).

Returns

• 0 Success.

• <0 An error occurred.

void(* destroy)()

Destroy a module.

The io-asr service calls destroy() when shutting down a module that has

successfuly initialized via the init() function.

int(* rate)(const char *url)

Rate this module for the specified source.

The rate() function rates this module's ability to handle the specified audio

source URL. The module should rate itself 100 if it can reliably play

resources of the specified type, but should supply a lower rating if can't play

the resources or if it must perform additional processing first.

Arguments

• url The URL for the audio source.

Returns

• The module's rating on success; -1 on error.

Copyright © 2014, QNX Software Systems Limited 181

mod_types.h

void(* unrate)()

Remove the rating for this module.

The unrate() function removes the rating for this audio module.

int(* set_params)()

Set the audio parameters for this module.

The set_params() function sets the global audio parameters for this module.

Returns

• 0 Success.

• -1 An error occurred.

int(* open)()

Open the audio module.

The open() function opens this audio module.

Returns

• 1 Success.

• <1 An error occurred.

int(* start)()

Start the audio module.

The start() function causes the module to begin to perform its particular

service, for example capturing audio or playing back from a file.

Returns

• 0 Success.

• -1 An error occurred.

int(* acquire_buffer)(asr_audio_info_t *info, int wait)

Request an audio buffer.

The acquire_buffer() function requests a buffer.

Arguments

182 Copyright © 2014, QNX Software Systems Limited

API Reference

• info The structure to store the audio sample.

• wait An optional flag to indicate whether the module should wait for a

successful audio sample.

Returns

• 0 Capturing has finished. The buffer is available.

• >0 Capturing is ongoing.

• <0 An error ocurred.

void(* relinquish_buffer)(asr_audio_info_t *info)

Relinquish an audio buffer.

The relinquish_buffer() function resets the buffer in the info structure so

that it can be used again.

Arguments

• info The structure that contains the buffer.

int(* get_utterance)(asr_audio_info_t *info)

Capture an utterance.

The get_utterance() function stores an audio sample in the buffer referenced

by the info parameter. It also sets the associated properties of the utterance:

buffer size, sample size, sample rate, and number of channels. The

get_utterance() function waits until the audio capture has completed before

copying the sample and returning.

Arguments

• info Indicates the structure in which to store the utterance and set the

properties.

Returns

• 0 Success.

• -1 An error occurred.

int(* set_utterance)(asr_audio_info_t *info, int offset_ms)

Copy an utterance to the specified buffer.

The set_utterance() function copies the last captured audio sample to the

buffer referenced by the info parameter, at the offset specified by the

Copyright © 2014, QNX Software Systems Limited 183

mod_types.h

offset_ms parameter. The sample size, sample rate, and number of channels

must match the properties of the captured sample. If the requested offset

results in a buffer overrun, an error is returned. If the audio capture has not

completed, an error is returned.

Arguments

• info Indicates the structure in which to store the utterance.

• offset_ms The offset (in milliseconds) of the utterance.

Returns

• 0 Success.

• EBUSY Capture has not completed.

• EINVAL The audio properties don't match.

• ERANGE Buffer overrun.

int(* save_wavefile)(const char *fname)

Save the captured audio sample as a WAV file.

The save_wavefile() copies the captured audio sample as a WAV file with

the specified filename.

Arguments

• fname The name to use for the WAV file.

Returns

• 0 Success.

• -1 The file couldn't be opened for writing.

int(* stop)()

Stop the audio capture.

The stop() function forces the audio capturing to stop.

Returns

• 0 Success

• -1 An error occurred.

int(* close)()

Close the audio module.

184 Copyright © 2014, QNX Software Systems Limited

API Reference

The close() function closes the audio module.

Returns

• 0 on success.

Library:

libasr

Description:

This structure defines the interface from io-asr to the audio module. Each audio

module's constructor function passes this structure to asra_connect() (p. 56).

asra_module_interface_t

Alias for the audio module interface.

Synopsis:

#include "asr/mod_types.h"

typedef struct asra_module_interface asra_module_interface_t;

Library:

libasr

Description:

This type is an alias for the audio module interface, asra_module_interface.

Enumerations in mod_types.h

module_status_e

The status of the module.

Synopsis:

#include "asr/mod_types.h"

typedef enum module_status_e{
 ASR_MODULE_STATUS_READY
 ASR_MODULE_STATUS_SHUTDOWN
} asr_module_status_t;

Data:

ASR_MODULE_STATUS_READY

Copyright © 2014, QNX Software Systems Limited 185

mod_types.h

The module is ready.

ASR_MODULE_STATUS_SHUTDOWN

The module can be shut down.

Library:

libasr

Description:

This data type enumerates the states of readiness of modules. Either a module is ready

and can interact with io-asr or it can be shut down (or unloaded, if implemented

as a DLL).

asr_module_status_t

Alias for the module status enumeration.

Synopsis:

#include "asr/mod_types.h"

typedef enum module_status_e asr_module_status_t;

Library:

libasr

Description:

This type is an alias for the module status enumeration, module_status_e.

Functions in mod_types.h

asr_connect()

Connect the recognition module to io-asr.

Synopsis:

#include "asr/mod_types.h"

asr_recognizer_hdl_t* asr_connect(const asr_recognizer_if_t *rif, unsigned
len)

Arguments:

rif

186 Copyright © 2014, QNX Software Systems Limited

API Reference

The initialized recognizer interface. The name, version, and callbacks in the

interface must be set.

len

The size of the recognizer interface.

Library:

libasr

Description:

The asr_connect() function adds the specified recognizer to io-asr's list of registered

modules, and then attaches the specified interface to the new handle.

Returns:

The recognizer handle on success; NULL on error.

stristr()

Finds a matching string (case-insensitive)

Synopsis:

#include "asr/mod_types.h"

char* stristr(const char *string, const char *find, int opt_len)

Arguments:

string

The string to search within.

find

The string to search for.

opt_len

The maximum length of string to search.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 187

mod_types.h

Description:

The stristr() function performs a case-insensitive search for find in string. In other

words, this is a case-insensitive version of the standard POSIX strstr() function.

Returns:

The search string on success; NULL on error.

188 Copyright © 2014, QNX Software Systems Limited

API Reference

protos.h

Functions for module logging.

The protos.h header file provides functions for logging.

Functions in protos.h

logmsg()

Helper function used to generate log messages.

Synopsis:

#include "asr/protos.h"

int logmsg(int severity, const char *fmt,...) __attribute__((format(printf

Arguments:

severity

The severity of the condition that triggered the message. For more information

on severity levels, see slogf() in the QNX C Library Reference. Valid values

include:

• _SLOG_INFO

• _SLOG_WARN

• _SLOG_ERROR

• _SLOG_CRITICAL

fmt

The format string to print to the log buffer. This may include tokens to be

replaced by values of variable arguments appended to the end of the call.

The max length of an expanded log message is 1024 characters (this includes

all format substitutions and the null terminator).

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 189

protos.h

Description:

The logmsg() function sends debugging information with an associated severity to the

appropriate log. The log where the data is actually sent is specified by the global

variable log_stdout. If this variable is nonzero, output generated by this function

is printed to the system log.

Log messages are written to the log buffer only if their severity is less than or equal

to the current verbosity setting.

NOTE: If the severity of the log message is critical, the program is aborted. If the

severity of the log message is _SLOG_ERROR, the program exits with a failure status.

Returns:

0 on success.

-1 on error.

logresult()

Send a recognition result to the log.

Synopsis:

#include "asr/protos.h"

int void logresult(const int severity, const asr_result_t *result)

Arguments:

severity

The severity of the current result to be logged.

result

A pointer to the recognition result to examine.

Library:

libasr

Description:

The logresult() function writes details about the specified result to the log. The specified

severity must be less than the ASR global severity level.

190 Copyright © 2014, QNX Software Systems Limited

API Reference

Returns:

Nothing.

Copyright © 2014, QNX Software Systems Limited 191

protos.h

slot-factory.h

Functions and data types for the SlotFactory.

The slot-factory.h header file provides functions and data types for interacting

with the SlotFactory object, which is used to manage recognition results.

Definitions in slot-factory.h

Preprocessor macro definitions for the slot-factory.h header file in the libasr library.

Definitions:

#define SlotFactory_DefaultPageSize 4096

The default page size.

Library:

libasr

Data types in slot-factory.h

_Entry

A slot list entry.

Synopsis:

struct _Entry SlotFactory_Entry {
 char * word ;
 asr_slot_entry_t * slot ;
 SlotFactory_Entry * next ;
};

Data:

char * word

The word association with the entry.

asr_slot_entry_t * slot

The transcription slot entry.

SlotFactory_Entry * next

A pointer to the next slot list entry.

192 Copyright © 2014, QNX Software Systems Limited

API Reference

Library:

libasr

Description:

This structure holds the word that is associated with the entry, as well as a pointer to

the transcription slot entry (see asr_slot_entry_t (p. 179)) and a pointer to the next slot

entry in the list. This allows entries to be chained in a singly linked list.

_SlotFactory

Structure encapsulating slot factory data.

Synopsis:

struct _SlotFactory SlotFactory {
 asr_slot_entry_t * entries ;
 size_t buffer_size ;
 unsigned int page_size ;
 unsigned int max_entries ;
 unsigned int num_entries ;
 SlotFactory_EntryList terminals ;
};

Data:

asr_slot_entry_t * entries

A buffer containing an array of transcription slot entries.

size_t buffer_size

The size of the buffer.

unsigned int page_size

The page size.

Optional. Specified at initialization.

unsigned int max_entries

The maximum number of slot entries in the buffer.

unsigned int num_entries

The current number of slot entries in the buffer.

SlotFactory_EntryList terminals

An ordered list of slot entry objects.

Copyright © 2014, QNX Software Systems Limited 193

slot-factory.h

Library:

libasr

Description:

The slot factory manages an array of ASR slot structures that can be passed to the

various ASR context-manipulation functions.

The buffer slot structure is allocated in pages to optimize memory use without

frequently reallocating the buffer. The size of a single page of slot entries can be set

when the slot factory is initialized. The default page size is 4 KB, which is large enough

to hold 168 asr_slot_entry_t instances. If a page size is specified when the slot

factory is initialized, it is adjusted to the next largest 32-bit aligned buffer size.

SlotFactory_Entry

An alias for the slot list entry type.

Synopsis:

#include <asr/slot-factory.h>

typedef struct _Entry SlotFactory_Entry;

Library:

libasr

Description:

This type is an alias for the slot list entry type, _Entry.

SlotFactory_EntryList

An ordered list of slot entry objects.

Synopsis:

#include <asr/slot-factory.h>

typedef SlotFactory_Entry* SlotFactory_EntryList;

Library:

libasr

Description:

This data type is used to manage ordered lists of slot entry objects. Slot entry lists are

in alphabetical order by terminal. Duplicate terminals are not allowed in slot entry

lists.

194 Copyright © 2014, QNX Software Systems Limited

API Reference

SlotFactory

An alias for the slot factory type.

Synopsis:

#include <asr/slot-factory.h>

typedef struct _SlotFactory SlotFactory;

Library:

libasr

Description:

This type is an alias for the slot factory type, _SlotFactory.

Functions in slot-factory.h

SlotFactory_Create()

Create a new slot factory instance.

Synopsis:

#include <asr/slot-factory.h>

SlotFactory* SlotFactory_Create(unsigned int num_slots, unsigned int *page_size)

Arguments:

num_slots

The initial number of slot entries that the factory's buffer can hold.

page_size

A pointer to a buffer containing the page size used when allocating ASR slot

entry buffers. The value obtained from this optional argument is adjusted

to the next largest 32-bit aligned value.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 195

slot-factory.h

Description:

The SlotFactory_Create() function creates a new slot factory instance by allocating an

entry buffer that can hold a minimum number of slot entries (specified by num_slots).

If the num_slots argument is zero, the no memory is allocated for the entry buffer and

no entry elements are created. These members are updated when the first allocation

occurs via the SlotFactory_createUniqueEntry() function.

Returns:

A new slot factory instance created on the heap. The ownership of the memory returned

by this function is transferred to the calling context, which must delete the instance

by calling the SlotFactory_Delete() function. If an allocation error occurs, this

constructor will return a NULL pointer and set errno accordingly.

SlotFactory_createEntry()

Create a new slot entry instance.

Synopsis:

#include <asr/slot-factory.h>

SlotFactory_Entry* SlotFactory_createEntry(SlotFactory *self, const char
*terminal, const uint64_t *id)

Arguments:

self

A pointer to the slot factory whose slot entry buffer provides the slot entry

to associate with the slot entry structure.

terminal

The terminal string to associate with the entry.

id

A pointer to a buffer containing a 64-bit entry ID to associate with the

asr_slot_entry_t type associated with the returned Entry.

Library:

libasr

196 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

The SlotFactory_createEntry() function creates a new slot entry instance, associating

it with an asr_slot_entry_t structure from the factory's buffer.

The SlotFactory_createEntry() function creates a new slot entry instance on the heap,

copies the specified terminal into its word buffer, allocates a new asr_slot_entry_t

structure from the factory, then associates the two structures. An optional entry ID,

id, can be specified and is assigned to the newly allocated entry. If no ID is specified,

one is assigned automatically.

Returns:

A new instance of the SlotFactory_Entry structure, created on the heap, that

represents the specified terminal. The ownership of the memory returned by this

function is transferred to the calling context, which must delete it using the

SlotFactory_Entry_delete() function.

SlotFactory_createUniqueEntry()

Create a unique Entry instance for the specified terminal.

Synopsis:

#include <asr/slot-factory.h>

SlotFactory_Entry* SlotFactory_createUniqueEntry(SlotFactory *self, const char
 *terminal, const uint64_t *id)

Arguments:

self

A pointer to the slot factory instance to use to allocate the new slot entry.

terminal

The terminal string to associate with the new slot entry.

id

An optional pointer to a buffer containing a 64-bit entry ID that is associated

with the asr_slot_entry_t type associated with the returned slot entry.

If this argument is NULL, the factory will automatically assign an ID to the

entry.

Copyright © 2014, QNX Software Systems Limited 197

slot-factory.h

Library:

libasr

Description:

If no slot entry for the specified terminal has been created by the current factory

instance (using the createUniqueEntry() function), the SlotFactory_createUniqueEntry()

function allocates and returns a new slot entry. The new slot entry has an

asr_slot_entry_t structure associated with it from the slot entry buffer maintained

by the factory.

Returns:

A new instance of the SlotFactory_Entry type, created on the heap, that represents

the specified terminal. The ownership of the returned memory is retained by the called

context, which will delete it when the Factory is reset. If an Entry for terminal has

already been created by this factory, its corresponding entry is returned. A NULL

pointer is returned if this function fails to create a new entry.

SlotFactory_Delete()

Delete a slot factory instance.

Synopsis:

#include <asr/slot-factory.h>

void SlotFactory_Delete(SlotFactory **factory)

Arguments:

factory

A pointer to the memory location of a slot factory instance.

Library:

libasr

Description:

The SlotFactory_Delete() function deletes a slot factory instance that was previously

allocated via SlotFactory_Create(). This instance is reset (i.e., its buffer is released)

and the memory it occupies is deleted. The factory pointer is set to NULL.

Returns:

Nothing.

198 Copyright © 2014, QNX Software Systems Limited

API Reference

SlotFactory_Entry_Create()

Create a new slot factory entry on the heap.

Synopsis:

#include <asr/slot-factory.h>

SlotFactory_Entry* SlotFactory_Entry_Create(const char *terminal)

Arguments:

terminal

A pointer to a character buffer containing the terminal to associate with the

new entry. The ownership of this memory is retained by the calling context

and won't be deleted by the entry structure member functions. If the

argument value is NULL, the new entry is created without an associated

word buffer.

Library:

libasr

Description:

The SlotFactory_Entry_Create() function is a constructor for slot entries that, optionally

given a terminal string, will create a new entry instance. If no terminal string is

provided, the word buffer will remain unallocated. This function is primarily defined

for use internally. Use the more robust SlotFactory_createUniqueEntry() function

instead.

Returns:

A pointer to a newly allocated entry. The ownership of the memory returned by this

function is transferred to the calling context, which is responsible for deleting it by

calling the SlotFactory_Entry_delete() member function.

SlotFactory_Entry_delete()

Delete a slot factory entry.

Synopsis:

#include <asr/slot-factory.h>

void SlotFactory_Entry_delete(SlotFactory_Entry **entry)

Copyright © 2014, QNX Software Systems Limited 199

slot-factory.h

Arguments:

entry

A pointer to the entry to be deleted.

Library:

libasr

Description:

The SlotFactory_Entry_delete() function deallocates a slot entry that was previously

allocated by the SlotFactory_Entry_Create() function. This function deletes the word

buffer associated with the entry; therefore, any external references to this buffer

become invalid following a call to this function.

Returns:

Nothing.

SlotFactory_init()

Initialize a slot factory instance.

Synopsis:

#include <asr/slot-factory.h>

bool SlotFactory_init(SlotFactory *self, unsigned int num_slots, unsigned int
 *page_size)

Arguments:

self

A pointer to the slot factory instance to initialize.

num_slots

The number of slot entries that the initial buffer of the factory can hold.

page_size

A pointer to a buffer containing the page size to use when allocating ASR

slot entry buffers. The value obtained from this optional argument is aligned

to the next 32-bit aligned value that is large enough to hold the specified

page size.

200 Copyright © 2014, QNX Software Systems Limited

API Reference

Library:

libasr

Description:

The SlotFactory_init() function creates a new slot entry buffer large enough to contain

num_slots entries. If self was previously initialized, the memory it manages is leaked.

Therefore, this function should not be called twice on the same slot factory instance.

Returns:

True if the factory is initialized; false if an error occurs during initialization. In the

error case, errno is set to indicate the error that ocurred: either EINVAL if self refers

to an invalid slot factory instance or ENOMEM if the slot entry buffer cannot be

allocated.

SlotFactory_reset()

Reset a slot factory instance.

Synopsis:

#include <asr/slot-factory.h>

void SlotFactory_reset(SlotFactory *self)

Arguments:

self

A pointer to the slot factory instance to reset.

Library:

libasr

Description:

The SlotFactory_reset() function releases the slot entry buffer and resets all counters

to zero.

Returns:

Nothing.

Copyright © 2014, QNX Software Systems Limited 201

slot-factory.h

terminals.h

For internal use only.

The terminals.h header is for internal use only.

202 Copyright © 2014, QNX Software Systems Limited

API Reference

types.h

Data types for control flow during speech analysis.

The types.h header provides data types for the control flow of speech recognition.

These data types include result classifications, state enumerations, and error codes.

Definitions in types.h

Preprocessor macro definitions for the types.h header file in the libasr library.

Definitions:

#define MAX_REC_LEN 140

For internal use only.

#define MAX_REC_RESULTS 5

For internal use only.

#define MAX_REC_TERMINAL_LEN 80

The maximum length of a terminal in a recognition result.

#define MAX_REC_TERMINALS 80

The maximum number of terminals in a recognition result.

#define isdigit (__extension__ ({ int _d = (int)(_c); _d = (_d >= '0' && _d
<= '9');}))

Determine whether the specified character is a digit.

#define isspace (__extension__ ({ int _d = (int)(_c); _d = (_d == ' ' || _d
== '\f' || _d == '\n' || _d == '\r' || _d == '\a' || _d == '\b' || _d == '\t'
 || _d == '\v');}))

Determine whether the specified character is white space.

#define isblank (__extension__ ({ int _d = (int)(_c); _d = (_d == ' ' || _d
== '\t');}))

Determine whether the specified character is a space or a tab.

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 203

types.h

Data types in types.h

asr_intent

A recognized intent.

Synopsis:

typedef struct asr_intent {
 char * field ;
 char * value ;
 asr_result_tag_t tag ;
}asr_intent_t;

Data:

char * field

The field of the intent (e.g., search-type).

char * value

The value of the intent (e.g., media).

asr_result_tag_t tag

The result tag for this intent.

Library:

libasr

Description:

This data type represents an intent. An intent is an interpreted aim or purpose of an

utterance. For example, the intent could be to play a media selection or dial a phone

number.

asr_intent_t

Alias for a recognized intent.

Synopsis:

#include <asr/types.h>

typedef struct asr_intent asr_intent_t;

Library:

libasr

204 Copyright © 2014, QNX Software Systems Limited

API Reference

Description:

This type is an alias for the recognized intent type, asr_intent.

asr_result

The recognition result.

Synopsis:

struct asr_result asr_result_t {
 asr_result_t * next ;
 char * recognizer_id ;
 asr_result_type_t type ;
 asr_result_tag_t tag ;
 char * grammar_name ;
 char * start_rule ;
 char * recognized_speech ;
 int entries ;
 union {
 asr_terminal_t *terminal;
 asr_intent_t *intent;
 }
};

Data:

asr_result_t * next

A pointer to the next result.

char * recognizer_id

The ID of the recognizer that generated this result.

asr_result_type_t type

The result type of this result.

asr_result_tag_t tag

The result tag of this result.

char * grammar_name

The name of the grammar used to interpret this result.

This is "dictation" for NL (natural language) recognizers.

char * start_rule

The name of the rule to use to fulfill the user's command.

char * recognized_speech

The string representing the recognized speech.

Copyright © 2014, QNX Software Systems Limited 205

types.h

int entries

The number of entries (either terminal or intent).

anonymous union

asr_terminal_t * terminal

The array of terminals for this result.

asr_intent_t * intent

The array of intents for this result.

Library:

libasr

Description:

This type represents the recognition result, which is the text representation of the

spoken utterance. The result is either a terminal or an intent.

asr_result_t

Alias for the recognition result.

Synopsis:

#include <asr/types.h>

typedef struct asr_result asr_result_t;

Library:

libasr

Description:

This type is an alias for the recognition result type, asr_result.

asr_result_tag

Properties of the result.

Synopsis:

typedef struct asr_result_tag {
 uint64_t id ;
 int confidence ;
 int score ;
 unsigned begin_ms ;

206 Copyright © 2014, QNX Software Systems Limited

API Reference

 unsigned end_ms ;
}asr_result_tag_t;

Data:

uint64_t id

The ID of the result.

int confidence

The confidence score for the speech-to-text result.

A higher score indicates greater confidence.

int score

The score is used to determine the correct context for the result.

The lower the score for a context, the better the match.

unsigned begin_ms

The time in the audio capture (in milliseconds) where the terminal begins.

unsigned end_ms

The time in the audio capture (in milliseconds) where the terminal ends.

Library:

libasr

Description:

This data type represents properties of a recognition result.

asr_result_tag_t

Alias for the result properties enumeration.

Synopsis:

#include <asr/types.h>

typedef struct asr_result_tag asr_result_tag_t;

Library:

libasr

Copyright © 2014, QNX Software Systems Limited 207

types.h

Description:

This type is an alias for the result properties enumeration, asr_result_tag.

asr_result_type

The status of the result.

Synopsis:

typedef struct asr_result_type {
 enum {
 ASR_RECOGNITION_GRAMMAR,
 ASR_RECOGNITION_DICTATION,
 ASR_RECOGNITION_INTENT,
 } recognition_type;
 enum {
 ASR_RESULT_PARTIAL,
 ASR_RESULT_FINAL,
 ASR_RESULT_FAILED,
 } result_type;
 enum {
 ASR_RESULT_OK,
 ASR_RESULT_LOW_CONFIDENCE,
 ASR_RESULT_REJECTED,
 ASR_RESULT_SILENCE,
 ASR_RESULT_CANCELED,
 ASR_RESULT_INTERUPTED,
 ASR_RESULT_MAX_RETRIES,
 ASR_RESULT_ERROR,
 } result_status;
 enum res_error_t {
 ASR_ERROR_NONE,
 ASR_ERROR_REMOTE_SERVER,
 ASR_ERROR_NETWORK,
 ASR_ERROR_GENERAL,
 ASR_ERROR_AUDIO,
 ASR_ERROR_TIMEOUT,
 ASR_ERROR_NO_MEMORY,
 ASR_WARNING_NOTHING_RECOGNIZED,
 ASR_WARNING_SPOKE_TOO_SOON,
 ASR_WARNING_SILENCE,
 ASR_ERROR_SERVICE_UNAVAILABLE,
 } error;
 char *error_description;
} asr_result_type_t;

Data:

enum recognition_type

The recognition type. Members include:

ASR_RECOGNITION_GRAMMAR

A grammar result.

ASR_RECOGNITION_DICTATION

A dictation result.

ASR_RECOGNITION_INTENT

An intent result.

208 Copyright © 2014, QNX Software Systems Limited

API Reference

enum result_type

The result type. Members include:

ASR_RESULT_PARTIAL

A partial result.

ASR_RESULT_FINAL

A final result

ASR_RESULT_FAILED

A failed result.

enum result_status

The result status. Members include:

ASR_RESULT_OK

The result is OK.

ASR_RESULT_LOW_CONFIDENCE

There is low confidience in the correctness of the result.

ASR_RESULT_REJECTED

The result is rejected.

ASR_RESULT_SILENCE

The recognizer did not find any speech in the audio capture.

ASR_RESULT_CANCELED

The recognition turn was canceled.

ASR_RESULT_INTERUPTED

The recognition turn was interrupted.

ASR_RESULT_MAX_RETRIES

The recognizer has retried the maximum number of times.

ASR_RESULT_ERROR

There was an error with the result.

Copyright © 2014, QNX Software Systems Limited 209

types.h

enum error

Error codes. Members include:

ASR_ERROR_NONE

No error.

ASR_ERROR_REMOTE_SERVER

A server error occurred.

ASR_ERROR_NETWORK

A network error occurred.

ASR_ERROR_GENERAL

A general error occurred.

ASR_ERROR_AUDIO

An audio capture error occurred.

ASR_ERROR_TIMEOUT

A timeout error occurred.

ASR_ERROR_NO_MEMORY

There was insufficient memory for the operation.

ASR_WARNING_NOTHING_RECOGNIZED

The recognizer couldn't detect any speech (possibly because the

audio level is too low).

ASR_WARNING_SPOKE_TOO_SOON

The user spoke too soon. This can cause the recognizer to miss

the first part of the utterance.

ASR_WARNING_SILENCE

The recognizer couldn't detect any speech.

ASR_ERROR_SERVICE_UNAVAILABLE

The service is temporarily unavailable.

char * error_description

The long description of the error.

210 Copyright © 2014, QNX Software Systems Limited

API Reference

Library:

libasr

Description:

This data type describes the status of the recognition result.

asr_result_type_t

The status of the result.

Synopsis:

#include <asr/types.h>

typedef struct asr_result_type asr_result_type_t;

Library:

libasr

Description:

This data type describes the status of the recognition result.

asr_terminal

A recognized terminal.

Synopsis:

typedef struct asr_terminal {
 char * string ;
 int from_slot ;
 asr_result_tag_t tag ;
}asr_terminal_t;

Data:

char * string

The string representation of the recognized word, number, or digit.

int from_slot

The starting slot.

asr_result_tag_t tag

The result tag for this terminal.

Copyright © 2014, QNX Software Systems Limited 211

types.h

Library:

libasr

Description:

This data type represents a terminal. A terminal is a recognized block of speech,

usually corresponding to a single word or number. In the case of voice dialing, a

terminal may correspond to a spoken digit.

asr_terminal_t

Alias for the recognized terminal.

Synopsis:

#include <asr/types.h>

typedef struct asr_terminal asr_terminal_t;

Library:

libasr

Description:

This type is an alias for the recognized teminal type, asr_terminal.

Enumerations in types.h

asr_step_e

The recognition step.

Synopsis:

#include <asr/types.h>

typedef enum asr_step_e{
 ASR_STEP_LOCALE_CHANGED
 ASR_STEP_SESSION_OPENED
 ASR_STEP_SESSION_ERROR
 ASR_STEP_SESSION_CANCELED
 ASR_STEP_PROMPT_STARTING
 ASR_STEP_PROMPT_STOPPED
 ASR_STEP_RECOGNITION_BEGIN
 ASR_STEP_RECOGNITION_CONFIGURED
 ASR_STEP_PRE_AUDIO_CAPTURE
 ASR_STEP_PRE_SPEECH_SILENCE_TIMEOUT
 ASR_STEP_POST_AUDIO_CAPTURE
 ASR_STEP_LOCAL_QUERY_BEGIN
 ASR_STEP_REMOTE_QUERY_BEGIN
 ASR_STEP_QUERY_END
 ASR_STEP_POSTING_RESULT
 ASR_STEP_REPOSTING_RESULT
 ASR_STEP_RECOGNIZED_SPEECH
 ASR_STEP_UNRECOGNIZED_SPEECH
 ASR_STEP_UNHANDLED_SPEECH
 ASR_STEP_RECOGNIZED_SILENCE

212 Copyright © 2014, QNX Software Systems Limited

API Reference

 ASR_STEP_TURN_COMPLETE
 ASR_STEP_RECOGNITION_END
 ASR_STEP_RECOGNITION_HELD
 ASR_STEP_SESSION_CLOSED
 ASR_STEP_SESSION_CLEANUP
 ASR_STEP_TASK_COMPLETE
 ASR_STEP_SESSION_ABORTED
} asr_step_t;

Data:

ASR_STEP_LOCALE_CHANGED

The locale has changed and localized assets have been updated.

ASR_STEP_SESSION_OPENED

A speech session has been opened.

ASR_STEP_SESSION_ERROR

An unrecoverable error has occurred.

This step is be followed by ASR_STEP_SESSION_CLOSED.

ASR_STEP_SESSION_CANCELED

The user cancelled the recognition session.

ASR_STEP_PROMPT_STARTING

An audio prompt service has been requested.

The ASR state is prompting.

ASR_STEP_PROMPT_STOPPED

An audio prompt service has completed.

The ASR state is processing.

ASR_STEP_RECOGNITION_BEGIN

A recognition turn has started.

ASR_STEP_RECOGNITION_CONFIGURED

The recognition contexts, data, and configuration have been loaded.

ASR_STEP_PRE_AUDIO_CAPTURE

Copyright © 2014, QNX Software Systems Limited 213

types.h

Audio capture is about to start (microphone will be turned on).

The ASR state is listening.

ASR_STEP_PRE_SPEECH_SILENCE_TIMEOUT

No speech was detected within the silence timeout period.

ASR_STEP_POST_AUDIO_CAPTURE

The microphone has been turned off (either end of speech was detected or

asra_stop() was called).

The ASR state is processing.

ASR_STEP_LOCAL_QUERY_BEGIN

The local ASR service has started processing the captured audio.

ASR_STEP_REMOTE_QUERY_BEGIN

A remote ASR service has started processing the captured audio (expect

latency).

ASR_STEP_QUERY_END

The ASR service has returned results.

ASR_STEP_POSTING_RESULT

The recognition result has been generated and is about to be delivered.

ASR_STEP_REPOSTING_RESULT

The recognition result was selected by the wrong module.

ASR_STEP_RECOGNIZED_SPEECH

The module has processed the results.

ASR_STEP_UNRECOGNIZED_SPEECH

The ASR service didn't recognize any speech in the utterance.

ASR_STEP_UNHANDLED_SPEECH

No module selected any of the recognition results.

214 Copyright © 2014, QNX Software Systems Limited

API Reference

ASR_STEP_RECOGNIZED_SILENCE

There was no audio captured or the audio was too quiet.

ASR_STEP_TURN_COMPLETE

Result processing is complete.

ASR_STEP_RECOGNITION_END

All module select and result callbacks have completed.

ASR_STEP_RECOGNITION_HELD

The current speech session has been held, to be ended or resumed later.

ASR_STEP_SESSION_CLOSED

The speech session has ended.

ASR_STEP_SESSION_CLEANUP

ASR is cleaning up the speech session.

The ASR state is idle.

ASR_STEP_TASK_COMPLETE

The user's task has been accomplished (e.g., media playback has begun,

phone call has been placed, etc.)

ASR_STEP_SESSION_ABORTED

There was an external cancellation of the recognition session (asr_stop() was

called due to a PPS strobe::off message.)

Library:

libasr

Description:

This enumeration represents the steps in the recognition process flow. Some of these

steps change the state of ASR, as recorded in the state attribute of the

/pps/services/asr/control PPS object. This state change is noted with the

enumeration values where applicable.

Copyright © 2014, QNX Software Systems Limited 215

types.h

asr_step_t

Alias for the recognition step enumeration.

Synopsis:

#include <asr/types.h>

typedef enum asr_step_e asr_step_t;

Library:

libasr

Description:

This type is an alias for the recognition step enumeration, asr_step_e.

result_action_e

The result action.

Synopsis:

#include <asr/types.h>

typedef enum result_action_e{
 ASR_RECOGNITION_ABORT
 ASR_RECOGNITION_CANCEL
 ASR_RECOGNITION_REPOST
 ASR_RECOGNITION_COMPLETE
 ASR_RECOGNITION_CONTINUE
 ASR_RECOGNITION_RESTART
 ASR_RECOGNITION_REPEAT
 ASR_RECOGNITION_UNKNOWN
 ASR_RECOGNITION_HELD
 ASR_RECOGNITION_HOLD
} asr_result_action_t;

Data:

ASR_RECOGNITION_ABORT

Stop the recognition turn as incomplete.

ASR_RECOGNITION_CANCEL

Stop the recognition turn and discard any pending results.

ASR_RECOGNITION_REPOST

Repost the current results.

This allows a conversation module to hand off to other conversation modules.

216 Copyright © 2014, QNX Software Systems Limited

API Reference

ASR_RECOGNITION_COMPLETE

The recognition is complete.

Stop the recognition turn if not in continuous mode. Values higher than this

indicate a recognizer restart.

ASR_RECOGNITION_CONTINUE

Continue recognizing.

Incremental results are cached.

ASR_RECOGNITION_RESTART

Restart the recognition from the audio source (either get new audio data

from the microphone or call asr_set_utterance() to get a new audio buffer).

ASR_RECOGNITION_REPEAT

Restart the recognition from previous recognition features (stored phonemes).

ASR_RECOGNITION_UNKNOWN

The module doesn't understand the command.

This might occur if there has been a context switch.

ASR_RECOGNITION_HELD

A recognition hold has blocked the processing of results.

ASR_RECOGNITION_HOLD

A recognition hold will be triggered, requiring a call to asr_release() or

asr_stop().

Library:

libasr

Description:

This enumeration represents the actions that can be taken during the processing of

recognition results.

Copyright © 2014, QNX Software Systems Limited 217

types.h

asr_result_action_t

Alias for the result action enumeration.

Synopsis:

#include <asr/types.h>

typedef enum result_action_e asr_result_action_t;

Library:

libasr

Description:

This type is an alias for the result action enumeration, result_action_e.

Functions in types.h

tolower_m()

Convert the specified character to lowercase.

Synopsis:

#include <asr/types.h>

int tolower_m(int c)

Arguments:

c

The character to convert.

Library:

libasr

Description:

The tolower_m() function converts the specified ASCII character to lowercase. If the

character isn't in the range of ASCII uppercase characters, it's returned unchanged.

Returns:

The lowercase character on success; the unchanged character on error.

218 Copyright © 2014, QNX Software Systems Limited

API Reference

toupper_m()

Convert the specified character to uppercase.

Synopsis:

#include <asr/types.h>

int toupper_m(int c)

Arguments:

c

The character to convert.

Library:

libasr

Description:

The toupper_m() function converts the specified ASCII character to uppercase. If the

character isn't in the range of ASCII lowercase characters, it's returned unchanged.

Returns:

The uppercase character on success; the unchanged character on error.

Copyright © 2014, QNX Software Systems Limited 219

types.h

Index

A

ASR 9, 10, 11, 13, 31
control flow 11
extending 13, 31
name of service 9
overview 9
PPS control object 10
startup 10

audio modules 16
modifying 16

Automatic Speech Recognition, See ASR

C

car-media module 23, 24, 25
actions 24
conversation flow 24
grammars 25
guest context 25
mm-control plugin 23
mm-player plugin 23, 25
result handling 25

control flow 11
conversation module 19, 20, 23, 26, 31

adding 31
car-media module 23
configuration 19
dialer module 26
overview 19
search module 20
See also car-media module 23
See also dialer module 26
See also search module 20

D

dialer module 27, 28, 29
actions 27
ASR state transitions 27
conversation flow 27
grammars 29
guest context 29
HFP subsystem 27
result handling 28

E

extending ASR 13

I

intent 17
io-asr 9

L

log information 20

M

modules 9, 14, 15, 16, 17, 19, 20, 23, 26
audio 9, 16
callback functions 14
conversation 9, 19
conversation, car-media 23
conversation, dialer 26
conversation, search 20
definition 9
error logging 20
initialization function 14
interface data type 14
modifying 15, 16, 17
overview 14
private data 14
prompt 9, 15
recognition 9, 17
types of 9

N

Natural Language Adaptation Layer (NLAL) 17

P

PPS 10
control object 10

prompt module 15
configuration 15
modifying 15

R

recognition modules 17
modifying 17

recognition result 17

S

search module 20, 21, 22
ASR state transitions 21
converstaion flow 21
grammars 22
result handling 22
search actions 20

T

Technical support 8

Copyright © 2014, QNX Software Systems Limited 221

Automatic Speech Recognition Developer's Guide

Typographical conventions 6 U

utterance, definition 17

222 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Automatic Speech Recognition
	Process control flow

	Extending ASR
	Anatomy of a module
	Prompt module
	Audio modules
	Recognition module
	Conversation modules
	The search module
	The car-media module
	The dialer module

	Adding a conversation module
	Specifying NLAL grammars

	API Reference
	asr.h
	Definitions in asr.h
	Data types in asr.h
	asr_context_hdl
	asr_global_data_t
	asr_instance_data_t

	Functions in asr.h
	asr_cancel()
	asr_close_global()
	asr_close_instance()
	asr_context_add_entries()
	asr_context_create()
	asr_context_destroy()
	asr_context_save()
	asr_get_hold_count()
	asr_get_restart()
	asr_get_utterance()
	asr_hold()
	asr_open_global()
	asr_open_instance()
	asr_post_step()
	asr_recognition_initialize()
	asr_release()
	asr_reload_localization()
	asr_result_map_status()
	asr_set_recognizer()
	asr_set_restart()
	asr_set_utterance()
	asr_slog()
	asr_start()
	asr_stop()

	asra.h
	Data types in asra.h
	asra_module_hdl_t

	Functions in asra.h
	asr_audio_initialize()
	asra_acquire_buffer()
	asra_close()
	asra_connect()
	asra_disconnect()
	asra_get_utterance()
	asra_open()
	asra_relinquish_buffer()
	asra_save_wavefile()
	asra_set_params()
	asra_set_source()
	asra_set_utterance()
	asra_start()
	asra_stop()

	asrm.h
	Enumerations in asrm.h
	asrm_phrase_search_mode_t

	Functions in asrm.h
	asr_module_initialize()
	asr_strmatch()
	asrm_activate_module()
	asrm_append_intent()
	asrm_append_result()
	asrm_connect()
	asrm_context_add_entries()
	asrm_context_create()
	asrm_context_destroy()
	asrm_context_save()
	asrm_create_dictation_result()
	asrm_deactivate_module()
	asrm_delete_terminals()
	asrm_find_module()
	asrm_find_phrase()
	asrm_find_phrase_id()
	asrm_find_result_phrase()
	asrm_find_result_phrase_id()
	asrm_free_result()
	asrm_get_config()
	asrm_get_exclusive()
	asrm_get_holdcount()
	asrm_get_intent_field()
	asrm_get_locale()
	asrm_get_utterance()
	asrm_is_cancellation_request()
	asrm_is_confirmation()
	asrm_is_help_or_cancel()
	asrm_is_help_request()
	asrm_next_module()
	asrm_post_result()
	asrm_recognizer_hold()
	asrm_recognizer_release()
	asrm_recognizer_start()
	asrm_recognizer_stop()
	asrm_set_active_sections()
	asrm_set_exclusive()
	asrm_set_locale()
	asrm_set_utterance()
	asrm_slog()
	asrm_strdup_result()
	asrm_unset_exclusive()
	asrnl_check_section_rules()
	asrnl_evaluate_result()
	asrv_get_common_value()
	find_phrase()
	find_result_phrase()
	strconfstr()

	asrp.h
	Data types in asrp.h
	asr_prompt_interface
	asr_prompt_interface_t
	asrp_module_hdl_t
	asrp_module_interface
	asrp_module_interface_t
	asrp_post_step()
	asrp_prompt_info
	asrp_prompt_info_t
	asrp_visual_dialog
	asrp_visual_dialog_t

	Enumerations in asrp.h
	asrp_processing_flags_t
	tts_error_class_t

	Functions in asrp.h
	asrp_active_help()
	asrp_connect()
	asrp_get_status()
	asrp_play_item()
	asrp_play_tts()
	asrp_play_tts_item()
	asrp_play_url()
	asrp_reset()
	asrp_response_cb_t
	asrp_section_help()
	asrp_set_error()
	asrp_slog()
	asrp_start()
	asrp_stop()

	asrv.h
	Functions in asrv.h
	asrv_audio_acquire_buffer()
	asrv_audio_close()
	asrv_audio_open()
	asrv_audio_relinquish_buffer()
	asrv_audio_set_parms()
	asrv_audio_start()
	asrv_audio_stop()
	asrv_get_active_sections()
	asrv_get_common_value()
	asrv_get_context()
	asrv_get_recognizer_sections()
	asrv_post_data()
	asrv_post_result()
	asrv_post_step()

	cfg.h
	Data types in cfg.h
	cfg_encoder
	cfg_encoder_t
	cfg_item_t

	Functions in cfg.h
	cfg_add_item()
	cfg_add_item_string()
	cfg_attach_item()
	cfg_clear_item()
	cfg_clone()
	cfg_create()
	cfg_delete_item()
	cfg_destroy()
	cfg_detach_item()
	cfg_dup_resolved_item_value()
	cfg_dup_resolved_string()
	cfg_encoder_add_int()
	cfg_encoder_add_raw_string()
	cfg_encoder_add_string()
	cfg_encoder_attach()
	cfg_encoder_cleanup()
	cfg_encoder_end_object()
	cfg_encoder_init()
	cfg_encoder_start_object()
	cfg_find_higher_item()
	cfg_find_item()
	cfg_find_next_item()
	cfg_find_num()
	cfg_find_predefined_item()
	cfg_find_value()
	cfg_get_explicit_value()
	cfg_get_key()
	cfg_get_next_item()
	cfg_get_num()
	cfg_get_parent()
	cfg_get_value()
	cfg_insert_item()
	cfg_insert_raw_item()
	cfg_load()
	cfg_merge()
	cfg_replace_item()
	cfg_resolve_value()
	cfg_traverse()
	cfg_traverse_items()
	find_quote()
	remove_quotes()
	strip_escapes()
	strip_white()

	mod_types.h
	Definitions in mod_types.h
	Data types in mod_types.h
	asr_audio_info
	asr_audio_info_t
	asr_context_hdl_t
	asr_conversation_if
	asr_conversation_if_t
	asr_module_hdl_t
	asr_recognizer_hdl_t
	asr_recognizer_if
	asr_recognizer_if_t
	asr_slot_entry
	asr_slot_entry_t
	asr_transcription_s
	asr_transcription_t
	asra_module_interface
	asra_module_interface_t

	Enumerations in mod_types.h
	module_status_e
	asr_module_status_t

	Functions in mod_types.h
	asr_connect()
	stristr()

	protos.h
	Functions in protos.h
	logmsg()
	logresult()

	slot-factory.h
	Definitions in slot-factory.h
	Data types in slot-factory.h
	_Entry
	_SlotFactory
	SlotFactory_Entry
	SlotFactory_EntryList
	SlotFactory

	Functions in slot-factory.h
	SlotFactory_Create()
	SlotFactory_createEntry()
	SlotFactory_createUniqueEntry()
	SlotFactory_Delete()
	SlotFactory_Entry_Create()
	SlotFactory_Entry_delete()
	SlotFactory_init()
	SlotFactory_reset()

	terminals.h
	types.h
	Definitions in types.h
	Data types in types.h
	asr_intent
	asr_intent_t
	asr_result
	asr_result_t
	asr_result_tag
	asr_result_tag_t
	asr_result_type
	asr_result_type_t
	asr_terminal
	asr_terminal_t

	Enumerations in types.h
	asr_step_e
	asr_step_t
	result_action_e
	asr_result_action_t

	Functions in types.h
	tolower_m()
	toupper_m()

	Index

