
QNX® SDK for Apps and Media 1.0

QNX® SDK for Apps and Media 1.0

Multimedia Test Utilities Guide

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, Foundry27 are trademarks of
BlackBerry Limited that are registered and/or used in certain jurisdictions, and
used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Monday, April 14, 2014

Table of Contents

About This Guide ..5
Typographical conventions ...6

Technical support ...8

Chapter 1: Role of the Multimedia Test Utilities ..9

Multimedia test utilities ..10

Using the multimedia test utilities ..11

Chapter 2: mmcli ...13

Using mmcli instead of other components ...14

mmcli command line ..15

mmcli language ..18

mmcli test scripts ..20

mmcli interactive sessions ..22

Using mmcli to play media files ...24

Chapter 3: mmrplay ...27

Using mmrplay instead of mm-renderer ..28

mmrplay command line ...29

Playback examples ..33

Chapter 4: mm-pnp ..37

mm-pnp command line ...39

Configuring mm-pnp ...40

Initialization and termination activities ...43

Device monitoring, synchronization, and playback ..44

Multimedia Test Utilities Guide

Table of Contents

About This Guide

The Multimedia Test Utilities Guide describes the multimedia test and demo tools

that help developers prototype, test, and debug media apps. The binaries of some of

these utilities are included in the installer package, so you can use them from the

command line. For other utilities, their source code is included in the platform's source

code package to provide a programming reference for using multimedia services.

Go to:To find out about:

Role of the Multimedia Test Utilities (p.

9)

The capabilities of the multimedia test

utilities and their role in the development

lifecycle

mmcli (p. 13)How to test the APIs of other multimedia

components by using mmcli

Using mmcli to play media files (p. 24)How to play media files through mm-ren

derer by issuing mmcli commands

mmrplay (p. 27)How to play media files with single mmr

play commands

mm-pnp (p. 37)How to configure and run mm-pnp to

demonstrate the accessing, extracting,

and playing of mediastore content

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Role of the Multimedia Test Utilities

The QNX® SDK for Apps and Media 1.0 includes several multimedia utilities to help

you rapidly prototype, test, and debug media apps.

These utilities let you issue basic commands to play tracks and upload media

information to databases without having to manage communication sessions with

multimedia services or manually define inputs and outputs. The binaries of mmcli

and mmrplay are included in the platform installer, which unpackages them on your

host system. You can obtain the source code for mmrplay and mm-pnp by downloading

the platform's source code package, which is found on the same webpage as the

installer.

Using the multimedia test and demo tools, you can:

• learn about the media information flow between the device publishers, the QDB

database server, the mm-sync service, and the mm-renderer service

• adapt the code in the multimedia plug-and-play program (mm-pnp) to customize

the process of detecting mediastores and then synchronizing and playing their

media content

• play an audio or video file through mm-renderer by issuing a single command

• exercise the APIs of the multimedia services and libraries included with the product

When you're writing early versions of media apps and you need to support only common

use cases, it's convenient to use the multimedia test utilities because you need to

know relatively few commands. The device publishers and the QDB, mm-sync, and

mm-renderer services all have more complicated command interfaces and require

more time to learn and start using. These services should be used in later development

stages to support more complex use cases and to optimize performance and the user

experience.

Copyright © 2014, QNX Software Systems Limited 9

Multimedia test utilities

The QNX SDK for Apps and Media 1.0 includes these multimedia test utilities:

Source code in

platform source

code package

Binary in

installer

DescriptionUtility

YesTests the APIs of multimedia components by forwarding

commands from a script file or an interactive session to a loaded

library or service.

mmcli

YesYesPlays or records media through mm-renderer, after configuring

the service based on command-line options.

mmrplay

YesYesForwards media synchronization commands to mm-sync and

reports synchronization status. This utility is described in the

Multimedia Synchronizer Developer's Guide.

mmsyncclient

YesMultimedia plug-and-play tool, which provides a source code

walkthrough of detecting a device, synchronizing its metadata,

mm-pnp

and playing its media files. You can modify the configuration file

to customize how the tool responds when certain devices are

attached.

YesCharacter converter plugin, which can be used for

internationalization.

charcon

vert2_icu

YesMonitors database changes made by mm-sync, by using libdb

notify.

dbnotifydemo

The source code package for the platform is available at the same download

location as the installer.

10 Copyright © 2014, QNX Software Systems Limited

Role of the Multimedia Test Utilities

Using the multimedia test utilities

The test and demo tools are command-line utilities that don't have their own APIs.

Instead, users can enter high-level commands in a QNX Neutrino terminal to automate

common media-management tasks. This design saves you from having to link in

client-side libraries (for C programs) or use JavaScript extensions (for HTML5 apps)

to integrate your prototype apps with multimedia services.

You can display a list of supported options for each tool with the use system command,

as shown in the following example for mmcli:

% use mmcli

mmcli [options] [cmdfile]...

Options:
 -i DLL [options] -- load interface DLL
 -l log_file
 -D name=value -- define a global variable
 -h file -- save command history to that file
 -H -- save command history to "cli.history"
 -L -- display time as hh:mm:ss instead of seconds
 since start
 -v -- increase verbosity of CLI and all loaded
 modules

Copyright © 2014, QNX Software Systems Limited 11

Using the multimedia test utilities

Chapter 2
mmcli

The mmcli utility forwards commands to multimedia components so that you can test

their APIs. These commands can be listed in files or entered in an interactive session.

You must start mmcli with a command line that lists any desired logging options as

well as the files containing the media commands that you want to execute (we refer

to these files as test scripts). The mmcli tool configures itself based on the options

given and then executes the test scripts. Then, mmcli starts an interaction session,

which lets you enter media commands and see their results. If you don't name any

test scripts when starting mmcli, the utility just starts the interactive session and

waits for media commands.

With mmcli, you can test the APIs of these multimedia components:

• mm-renderer, for managing playback of single tracks or playlists

• libmd, for extracting metadata from files on mediastores

• libmmplaylist, for navigating playlists and retrieving their tracks

To use the mm-renderer API in mmcli, you must be running the mm-

renderer server process. For instructions on starting mm-renderer, see

the Multimedia Renderer Developer's Guide.

Copyright © 2014, QNX Software Systems Limited 13

Using mmcli instead of other components

The mmcli utility helps you to learn the APIs of multimedia libraries and services and

to test their functions without having to integrate those multimedia components with

your media apps.

With mmcli, you can start learning and using the multimedia components before you

begin developping the apps that will use them. This learning activity can help you in

your initial design of media apps and your subsequent implementation of media

operations within those apps.

When to use mmcli

You should use mmcli if you want to:

• exercise the APIs of multimedia components in an interactive command session

• write and execute test scripts to assess the functionality and performance of

multimedia components

• log all media commands and their results so that you can review the command

history and analyze any errors

When to use other components directly

You shouldn't use mmcli, but instead directly call the APIs of multimedia components

if you want to:

• write production-level media apps that don't depend on a helper utility to forward

commands to lower-level services

• optimize media operations by avoiding the mmcli overhead of parsing input text

and of logging errors

• customize how you handle errors or events reported by a particular library or service

14 Copyright © 2014, QNX Software Systems Limited

mmcli

mmcli command line

Start mmcli to execute test scripts and to accept interactive media commands

Synopsis:

mmcli [-D name=value] [-H] [-h history_file]
 [-i DLL [options]] [-L] [-l log_file] [-v]
 [script_file]...

Options:

-D name=value

Define a global variable. The string given for this option must contain a

name-value pair, with the name and value separated by an equal sign (=).

Global variables are visible to all test scripts and in the interactive session.

-H

Write the command history to the default history file (cli.history).

Commands are written to this file in the same order that they're executed,

whether they're read from test scripts or entered in the interactive session.

The history file is different from the log file, which you can set with the -l

option.

-h history_file

Write the command history to the specified file. As with the -H option,

commands are written in the order that they're executed.

-i DLL [options]

Load the dynamic library of a multimedia component. The API functions of

that component become accessible to mmcli.

The library filename can be followed by a set of parameters for initializing

the library. You must specify the parameters in a comma-separated list of

name-value pairs, in which the name and value in each parameter substring

are separated by an equal sign (=). For example, you can load the mm-ren

derer library and tell it to connect to the service named "car" and to create

a context named "voice" by setting the following option:

-i mmrenderer_cli.so connect=car,context=voice

You can provide as many -i options as you like to support all the APIs you

plan to use. The available configuration options vary with the library.

Copyright © 2014, QNX Software Systems Limited 15

mmcli command line

-L

When logging, display time as hh:mm:ss.aaa, where aaa is milliseconds.

By default, mmcli displays time as the number of seconds and milliseconds

since it was started, in the format sss.aaa.

-l log_file

Write the commands issued to mmcli and the results of commands to the

specified file in addition to displaying this information in the interactive

session.

The log file is different from the history file, which you can set with the -h

option. The log file provides more information because it contains not only

the command history but also the results of media operations.

-v

Enable verbose mode to log additional information.

This option is disabled by default.

script_file

Execute a test script of media commands. To ensure mmcli can support

the commands called by the script, you must either load the necessary library

files on the command line (see the -i option for more information) or use

the load command in the script before calling any API functions.

You can name as many test scripts as you like and mmcli will execute them

in the order listed. This is important to remember if you have dependencies

between scripts.

Description:

The mmcli utility loads the libraries of multimedia components so that you can call

their API functions in test scripts or in an interactive session. You can load certain

libraries on startup by specifying one or more -i options on the command line. For

any of these options, you can list name-value pairs of parameters to initialize the

library.

You can log the command history (with the -H or -h option) and log the results of

commands (with the -l option). These options allow you to generate and review the

complete chronological sequence of media operations with event timing and other

information included. The command history and the results of commands are always

displayed in the interactive session, even if you've disabled logging to files.

When started, mmcli:

16 Copyright © 2014, QNX Software Systems Limited

mmcli

1. examines its command-line settings to configure its logging features and to load

the libraries of multimedia components (as requested)

2. executes the test scripts named on its command line, in the order listed

3. starts an interactive session and waits for you to enter media commands

Note that you don't have to name any test scripts; in that case, mmcli simply skips

the second step. If you do provide test scripts to mmcli, you must load all library files

necessary to support the API commands called by those test scripts. While mmcli

can ignore or recover from some command specification errors, it can't guess at which

multimedia component implements a particular command and then load that

component.

The mmcli interactive session stays active until you enter quit to explicitly exit the

program.

Copyright © 2014, QNX Software Systems Limited 17

mmcli command line

mmcli language

In addition to supporting the API commands of loaded multimedia components, mmcli

has built-in commands that allow you to define and structure sequences of API

commands.

The mmcli utility parses its input line by line to extract commands. The input text

can come from test scripts or an interactive session—mmcli processes commands

from both sources identically.

In this sense, mmcli acts like an interpreter for a scripting language. This language

includes a group of built-in functions or keywords and it can be extended with the

APIs of multimedia components. For commands that correspond to API calls, mmcli

forwards them to the appropriate components for execution. The keyword commands

control the execution of other commands. For example, there are keywords for

branching, looping, and common functions such as waiting for an event or passing a

command string to the OS. You can use keywords both in test scripts and in the

interactive session.

Keywords

The mmcli utility supports these keywords:

DescriptionArgumentsKeyword

List all loaded modules (libraries). The module names are listed three per line, in

fixed-width columns.

cilist

Enable or disable the logging of the current time when writing command history or

event information to files.

By default, this setting is enabled. If you change it in one test script, this setting

remains in effect for all other test scripts until it's explicitly changed.

on | offclock

Print out a line of text.[text]echo

Start the “else” part of a conditional block. This command must be specified after

an if, ifdef, or ifndef command but before its corresponding fi command.

else

Wait for an event for up to n milliseconds.

In ev_list, you can list the numbers corresponding to the event types that you want

to monitor. List entries must be separated with either plus signs (+) or commas. If

you don't list any events, mmcli monitors all events.

n ev_listexpect

End a conditional block. This command must be specified after an if, ifdef, or

ifndef command, and that command must not already have another fi.

fi

18 Copyright © 2014, QNX Software Systems Limited

mmcli

DescriptionArgumentsKeyword

Read and execute commands from a test script. The script argument contains the

test script filename.

scriptfile

Define a global variable. This variable is visible in all test scripts and in the interactive

session.

name valglobal

Explain all currently available commands or the command named in cmd (if this

argument is given).

The available commands include all keyword commands and the API commands of

any loaded module.

[cmd]help

Start a conditional block that will be entered depending on the result of the last

command. When ok is given as the argument, the commands that follow will be

ok | errorif

executed only if the last command succeeded. When error is given, the commands

that follow will be executed only if the last command failed.

Note that you can nest blocks.

Start a conditional block that will be entered only if the test specified by cond

evaluates to true.

Note that you can nest blocks.

condifdef

Start a conditional block that will be entered only if the test specified by cond

evaluates to false.

Note that you can nest blocks.

condifndef

List all available API functions. The function names and signatures are listed three

per line, in fixed-width columns.

list

Load a module (library) to make its API functions available. The module argument

contains the library filename.

moduleload

Define a local variable. This variable is visible only in the current test script or the

current interactive session.

name vallocal

Open a file for logging the results of media commands.filelog

End a repeat block. This command is supported only in scripts. The commands before

a loop command but after the last repeat command will be executed n times

(where n is specified by the repeat command).

loop

Close the log file. Command results will no longer be logged.nolog

Exit from mmcli. In interactive mode, this command exits the program. In test scripts,

this command causes mmcli to stop executing the current script and exit altogether,

quit

which is useful if a serious error occurs and you want to shut down the program. Note

Copyright © 2014, QNX Software Systems Limited 19

mmcli language

DescriptionArgumentsKeyword

that other scripts named later on the command line won't be executed because mmcli

will exit immediately.

Repeat a block of commands. This command is supported only in scripts. The

commands between a repeat command and the next loop command will be executed

n times.

nrepeat

Set a delay of n milliseconds between executing commands in test scripts.nsetdelay

Launch a shell and execute a command in that shell (if the cmd argument is given).

In test scripts, you can examine the return code of the shell command to see if the

OS successfully executed the command specified in cmd. Launching a shell without

[cmd]shell

passing it a command is impractical in a test script because you can't manually enter

commands and view their results.

In interactive mode, the standard output and error streams from the shell are redirected

to mmcli, allowing you to view the command results. If you don't provide the cmd

argument, mmcli starts a shell process in the foreground so that you can enter and

execute commands in that shell until you close it (by typing exit).

Delay for n milliseconds.nsleep

Set or unset the “trap” condition. If this condition is set, mmcli stops processing

the current test script if a command fails.

By default, this setting is enabled. If you disable it in one test script, the trap condition

is re-enabled when mmcli begins processing the next test script.

on | offtrap

Set the logging level for a module (library). The module argument contains the library

filename. The level argument is either 0 (for "off") or 1 (for "on").

By default, logging is off.

module levelverbosity

mmcli test scripts

You can automate multimedia testing by executing test scripts with mmcli. Test scripts

offer a convenient way of rapidly issuing media commands and logging their results.

For mmcli, test scripts are simply text files that list one command per line. Each

command invokes either a built-in mmcli function or an API function from a

multimedia component. The script writer is responsible for learning the proper syntax

(i.e., the command name and the required arguments) for each command and correctly

specifying it; mmcli doesn't correct your input.

To execute a test script, you must either provide its filename on the command line or

execute it in interactive mode with the file command. Unlike interpreters for languages

20 Copyright © 2014, QNX Software Systems Limited

mmcli

such as Python or Perl, the mmcli utility can't be named in the first line of a script

to allow the file to be executed from a QNX Neutrino terminal.

Test script example

The following sample test script loads the Multimedia Playlist Library (libmm

playlist), opens a playlist file, and fetches the playlist entries up to a maximum

number of entries:

trap off

load mm-cli-mmplaylist.so

if error
echo Error loading command interface module.
quit
fi

mmplaylist_open / %playlist

if error
echo Error opening playlist:
echo %playlist
quit
fi

repeat %size
mmplaylist_entry_next_get 1
if error
echo Error retrieving playlist entry.
quit
fi
loop

echo Playlist read complete. Exiting.
quit

The if and fi keywords define error-handling branches, which just print out a brief error

message and exit.

Notice the references to the playlist and size variables in the arguments of the

mmplaylist_open and repeat commands. The percent sign (%) in front of a variable

name indicates a variable reference. For the script to work, you must define these two

variables on the command line (with the -D option for each variable) as follows:

mmcli -Dplaylist=/tmp/music/pl/playlists_all/M3Uv1_test.m3u \
 -Dsize=10 /Users/dcarson/work/temp/misc/branching.cli

Alternatively, you can instruct mmcli to load the playlist library before it runs the

script. This way, you don't have to use load in the script. To preload the library, use

the -i command-line option, as follows:

mmcli -i mm-cli-mmplaylist.so \
 -Dplaylist=/tmp/music/pl/playlists_all/M3Uv1_test.m3u \
 -Dsize=10 /Users/dcarson/work/temp/misc/branching.cli

Copyright © 2014, QNX Software Systems Limited 21

mmcli language

The repeat and loop keywords define the beginning and end of an iterative code section.

In this case, mmplaylist_entry_next_get is called repeatedly to get playlist entries until

either the script fetches the number of entries specified in size or it encounters an

error. The argument to this API function is the playlist handle; its value is hardcoded

to 1 because we know that this is the first (and only) playlist handle created in the

script.

The quit command on the last line causes mmcli to exit instead of going into interactive

mode. You can remove this last quit command to keep mmcli active so that you can

enter commands interactively after running the script.

mmcli interactive sessions

After executing any test scripts named on its command line, mmcli starts an interactive

session that allows you to enter media commands and see their results.

The interactive session is helpful for learning built-in mmcli commands (keywords)

as well as multimedia API commands because you can use the help command to list

all available commands. These include the keywords and the APIs of any loaded

components. The session also provides tab completion of partially specified command

names and allows you to navigate the list of previous commands using the up and

down arrow keys.

Some commands, notably repeat and loop, work only in test scripts. You can't

use them in interactive mode.

Interactive session example

The following excerpt from an interactive session shows how to use the Metadata

Provider Library (libmd) to read metadata from an MP3 file:

mmcli
Starting...
> load mm-cli-libmd.so
Unable to load DLL "mm-cli-libmd.so": Library cannot be found.
005 Command 'load' failed (-1, errno 2); No such file or directory
> load mm-cli-md.so
> mmmd_session_open /fs/usb0
010 Command 'mmmd_session_open':
sessionID: 1
> mmmd_get 1 /tmp/music/tracks/one.mp3 md_title::artist,album,\
 genre,name,comment,duration,width,height,bitrate,\
 samplerate,mediatype 0
054 Command 'mmmd_get':
metadata: md_title_artist::U2
md_title_album::Achtung Baby
md_title_genre::Rock
md_title_name::One
md_title_comment::Download from http://www.last.fm/music/U2
md_title_duration::276522
md_title_bitrate::128000
md_title_samplerate::44100
md_title_mediatype::2147483652
> mmmd_session_close 1

22 Copyright © 2014, QNX Software Systems Limited

mmcli

> quit
#

Because the first load command specifies an incorrect library name, mmcli outputs

an error message. The second command names the correct library, so mmcli loads

the API defined in the library and doesn't output anything to the interactive session.

The argument to mmmd_session_open is the mountpoint of the device that metadata

is being extracted from (in this case, a USB stick). The command outputs the numeric

ID of the new session, which must be used as the first argument in the mmmd_get

call. The second argument to mmmd_get provides the path of the track whose metadata

we're extracting. Alternatively, you could use the local command at an earlier point in

the script to set this variable locally and then reference this variable in the command

argument by using the percent sign (%) in front of the variable name. The third argument

lists the metadata fields that we're requesting. The fourth argument must be 0 to tell

libmd that there's no preferred plugin for extracting the metadata.

The mmmd_get command outputs the names and values of all metadata fields that

it successfully read. The duration (track length) is given in milliseconds while the bit

rate and sample rate are given in Hertz (Hz). The width and height fields don't

apply to audio tracks, so no metadata is retrieved for these fields.

Finally, the session ID is given again in the call to mmmd_session_close, which doesn't

produce any output.

It's not necessary to call mmmd_init and mmmd_terminate as the first and

last libmd functions because mmcli does this for you.

Copyright © 2014, QNX Software Systems Limited 23

mmcli language

Using mmcli to play media files

The following mmcli interactive sessions demonstrate common use cases for playing

media files with mm-renderer. The command sequences shown here don't correspond

exactly to the API calls needed if you're using mm-renderer directly, but do show

all the configuration steps needed to define a media flow, configure parameters, and

control playback.

Playing an audio file

To start playing an audio file located on a USB stick over the default audio device,

enter an mmcli command sequence like this:

mmcli -i mmrenderer_cli.so

> OutputAttach audio:default audio
018.965 Command 'OutputAttach':
ID: 0
> InputAttach /fs/usb0/tunes/arcade_fire/sprawl(II).wma track
> Play

The OutputAttach command defines an audio output for mm-renderer by

specifying a URL of audio:default and an output type of audio. This URL tells

mm-renderer to use automated audio routing with the Audio Manager service.

Because you can define many outputs, mm-renderer returns an output ID (which is

shown on the following line) for each attached output, so you can distinguish it from

the other outputs. You must attach all outputs before attaching the input because

mm-renderer sometimes determines whether it can play an input based on the types

of the attached outputs.

Next, the InputAttach command provides a URL with the path of a WMA file stored

on a device mounted to /fs/usb0, and also specifies the track input type (because

the input is a single track to be played in isolation). The Play command then starts

playback.

In this first example, the mmrenderer_cli.so library is loaded using -i when mmcli

is launched. This ensures that the mm-renderer API is available from the start of

the interactive session. You could also load the library just after launching mmcli, as

follows:

mmcli

> load mmrenderer_cli.so
> OutputAttach audio:default
...

24 Copyright © 2014, QNX Software Systems Limited

mmcli

When an audio track is playing, you can adjust its speed (with SpeedSet), seek to a

new position (with Seek), and stop playback (with Stop). For instance, after starting

playback with the previous command sequence, you can give the following commands:

> SpeedSet 0
> Seek 30000
> SpeedSet 1000
> Stop

This sequence pauses playback (by setting its speed to 0), seeks to a new position 30

seconds from the track start (as indicated by the 30000 value, which specifies a track

offset in milliseconds), resumes playback at normal speed, and finally stops playback.

It's not necessary to pause playback before seeking to a new position; this was done

just as an example of playback control.

Playing a video file

To play a video file stored on the local hard drive, enter a command set like this:

mmcli -i mmrenderer_cli.so

> OutputAttach screen: video
018.965 Command 'OutputAttach':
ID: 0
> OutputAttach snd:/dev/snd/pcmPreferredp audio
018.965 Command 'OutputAttach':
ID: 1
> OutputParameters 1 volume=30
> InputAttach /tmp/video/abilodeau_gold_medal_run.mp4 track
> Play

Here, two outputs are attached—one for the video component, which is rendered by

the Screen windowing service, and another for the audio component, which is outputted

over the preferred audio device (e.g., a speaker). The video or audio output type

must be given when calling OutputAttach for each component. Notice that each

output is given a distinct ID, which is displayed on the following line. The volume of

the audio output (whose ID is 1) is set to 30 with the OutputParameters command.

Next, the InputAttach command provides an input URL containing the path of a

video file found in the /tmp/video/ directory. Finally, the Play command starts

playing the video and audio components.

Playing a different media file

When you've finished playing one file and want to play another one, you must detach

the current input and output and then attach a new output before attaching a new

input:

> InputDetach
> OutputDetach 0
> OutputDetach 1
> OutputAttach
018.965 Command 'OutputAttach':

Copyright © 2014, QNX Software Systems Limited 25

Using mmcli to play media files

ID: 2
> InputAttach /tmp/audio/killers/when_you_were_young.mp3

The InputDetach command requires no parameters because only one input can be

set but OutputDetach requires the ID of the output being detached. You must call

OutputDetach for each attached output. After giving these commands, you can

define a new media flow by attaching one or more new outputs and then the new input.

26 Copyright © 2014, QNX Software Systems Limited

mmcli

Chapter 3
mmrplay

The mmrplay utility plays media files by invoking mm-renderer to manage the media

flow from an input to an output. The utility reports any playback errors and also reports

when the media finishes playing (if configured to do so).

The mm-renderer service must be running for mmrplay to work. For

information on starting mm-renderer, see “Starting the multimedia renderer”

in the Multimedia Renderer Developer's Guide.

You can play a media file by providing mmrplay with a single command that contains

valid URLs for an input and an output. The input URL can refer to:

• the path of a media file in the local filesystem

• an HTTP source (including an HTTP Live Streaming broadcast)

• an audio capture device (microphone)

• an SQL query run on a local database

The mmrplay utility accepts the same types of input URLs as mm-renderer. For

details on the supported input URLs, see the mmr_input_attach() function described

in the mm-renderer documentation.

To find the path of a media file stored on a connected device (e.g., a USB stick), you

must know the mountpoint assigned to the device when you attached it to your system.

The mountpoint and filesystem information of connected devices can be read from

the PPS objects stored in /pps/qnx/mount/, which are updated by the device

publishers when you attach or detach mediastores. These services run constantly in

the background, so the platform automatically mounts mediastore filesystems. The

Device Publishers Developer's Guide provides full information on how the publishers

work, including how they publish device mountpoints in PPS.

The output URL can name an audio or video device (for playback) or a file (for

recording, which works only for audio content). The output URL types supported by

mm-renderer (and mmrplay) are described in the mmr_output_attach() function,

also found in the mm-renderer documentation.

The mmrplay command may also contain:

• the name of the mm-renderer service to connect to

• a context name and associated set of parameters

• input parameters (e.g., repeat) and the input type (e.g., track)

• output parameters (e.g., volume)

• logging and verbosity settings

Copyright © 2014, QNX Software Systems Limited 27

Using mmrplay instead of mm-renderer

Although it conveniently abstracts the many steps required to play media through mm-

renderer, mmrplay is limited in terms of the media operations that it supports.

The mmrplay utility can only play a media track or playlist and report any errors and

(optionally) the playback completion. It can't accept any commands during playback

to select another input or to change the playback position or speed. To support these

more advanced operations, you must either use mm-renderer directly or load and

then call its API in mmcli.

When to use mmrplay

You should use mmrplay if you want to:

• rapidly and easily prototype a media app by enabling only basic playback, which

lets you focus more on designing other app features

• play media files by issuing a single command instead of the lengthy API call

sequence necessary to connect to mm-renderer, configure an output and an

input, start playback, and process and report events

When to use mm-renderer

You shouldn't use mmrplay, but instead use mm-renderer if you want to:

• offer the ability to pause or stop playback, to adjust the play speed, or to change

playlists without interrupting playback

• reuse the same context for multiple playback operations so that you don't have to

redefine the context parameters

• support configuration of individual tracks in a playlist

• customize how playback events and errors are handled and reported

28 Copyright © 2014, QNX Software Systems Limited

mmrplay

mmrplay command line

Play a media file through mm-renderer

Synopsis:

mmrplay [-r connectpath]
 [-c contextname] [-m mode] [-C ctxt_param=val]
 [[-a audio_url] | [-v video_url] |
 [-f file_url]]
 [[-A audio_param=val] | [-V video_param=val] |
 [-F file_param=val]]
 [-t inputtype] [-I input_param=val]
 [-D | -Q] input_url

Options:

-A audio_param=val

Apply a parameter for audio output. The string given for this option must

contain a name-value pair for an output parameter applicable to audio output,

with the name and value separated by an equal sign (=). For the list of audio

output parameters, see the mmr_output_parameters() function in the mm-

renderer API description.

By default, no parameters are set for audio output. You can name as many

output parameters as you need, but each must go in its own -A option.

-a audio_url

Name the URL of an audio device to use for output. The URL formats that

are valid for audio output are given in the mmr_output_attach() section of

the Multimedia Renderer Developer's Guide.

This option can be specified only once in the command line and shouldn't

be used if you're using one of the -v and -f options.

-C ctxt_param=val

Apply a parameter to the context. The string given for this option must

contain a name-value pair for a valid context parameter, with the name and

value separated by an equal sign (=). For the list of context parameters, see

the mmr_context_parameters() function in the mm-renderer API

description.

By default, no parameters are applied to the context. You can name as many

context parameters as you need, but each must go in its own -C option.

-c contextname

Copyright © 2014, QNX Software Systems Limited 29

mmrplay command line

Name the new context that will manage the media flow for this playback

operation. The default context name is “testplayer”.

-D

Enable additional event logging. When this option is set, mmrplay logs

messages when the playback finishes and when the input is detached. This

option is handy for knowing whether playback completed successfully.

-F file_param=val

Apply a parameter for file output. The string given for this option must

contain a name-value pair for an output parameter applicable to file output,

with the name and value separated by an equal sign (=). See

mmr_output_parameters() for the list of file output parameters.

By default, no parameters are set for file output. You can name as many

output parameters as you need, but each must go in its own -F option.

-f file_url

Name the URL of a file to use for recording media content. See

mmr_output_attach() for the list of URL formats that are valid for file output.

This option can be specified only once in the command line and shouldn't

be used if you're using one of the -a and -v options.

-I input_param=val

Apply a parameter to the input. The string given for this option must contain

a name-value pair for a valid input parameter, with the name and value

separated by an equal sign (=). For the list of input parameters, see the

mmr_input_parameters() function in the mm-renderer API description.

By default, no parameters are applied to the input. You can name as many

input parameters as you need, but each must go in its own -I option.

-m mode

Set the file permission flags for the directory to be used by the new context.

By default, the directory has the same read and execute permissions as the

user.

-Q

Disable event logging except for errors and warnings. By default, mmrplay

logs information not only for errors and warnings but also for updates to

track metadata or to the playlist window. This option is handy for minimizing

the logging while still seeing serious errors.

30 Copyright © 2014, QNX Software Systems Limited

mmrplay

-r connectpath

Name the mm-renderer service to connect to. If you don't provide this

option, the default service is used.

-t inputtype

Set the input type. Acceptable values are: track, playlist, and

autolist. The default setting is track.

-V video_param=val

Apply a parameter for video output. The string given for this option must

contain a name-value pair for an output parameter applicable to video output,

with the name and value separated by an equal sign (=). By default, no

parameters are set for video output. You can name as many output parameters

as you need, but each must go in its own -V option.

For video outputs that use the screen: URL type, the recommended

way to set window properties is either in the URL itself (when

attaching the output) or through the Screen library (after you've

attached the output). Currently, no useful properties can be set by

defining output parameters with -V, but this option could be used

if new parameters for screen: URLs or new URL types for video

output are defined in future releases.

-v video_url

Name the URL of a video device to use for output. See mmr_output_attach()

for the list of URL formats that are valid for video output.

This option can be specified only once in the command line and shouldn't

be used if you're using one of the -a and -f options.

input_url

Name the URL of the input source. This parameter is required because mm

rplay must be told what to play or record. The input URL is passed to mm-

renderer, which supports these input sources:

• files in the local filesystem, including those on attached mediastores

mounted in the filesystem

• HTTP streams, including live broadcasts

• audio capture devices (microphones)

• query results from SQL-driven databases

Copyright © 2014, QNX Software Systems Limited 31

mmrplay command line

For the list of valid URL formats for each input type, see the

mmr_input_attach() function in the mm-renderer documentation.

Description:

The mmrplay utility plays media files by invoking mm-renderer to manage the media

flow from the specified input to the specified output. You can name only one input in

the command line, but this input can be a playlist if you want to play multiple tracks

in sequence.

The output that you name can be an audio or video device or a file. If you

provide URLs for more than one output type on the command line, mmrplay

selects the URL to use as the media stream destination in the following order

(from most to least preferred): file, video, and audio.

For each input you want to play, you need to provide only one command to mmrplay

and the utility then configures and uses mm-renderer to play the specified input.

Each mmrplay command opens a new connection and creates a new context with

mm-renderer to start the playback. When the playback finishes, mmrplay detaches

the input and closes the connection.

Note that mmrplay detects only basic command-line errors, such as invalid options,

and doesn't validate the values given for recognized options. Instead, mmrplay forwards

these option values to mm-renderer, which validates them. The mmrplay utility

displays any parameter errors reported by mm-renderer to standard error.

By default, mmrplay logs information for:

• errors and warnings related to playback

• metadata updates for a playlist entry

• changes to the playlist window (e.g., the playlist position moved forward by one

track, causing another track to enter the playlist range)

When provided with the -V option, mmrplay logs additional messages when the

playback finishes (which indicate whether it finished normally or abnormally) and

when subsequently detaching the input and closing the connection to mm-renderer.

The -Q option enables logging for only error and warning events.

The mmrplay utility is purely a command-line tool; it has no client library exposing

an API in C. Once started, mmrplay runs as a self-contained process that doesn't

require any user input or accept any commands. You can't cancel the playback or

change its speed or position once it's started, and you can't save the input and output

URLs or their parameters for subsequent operations. This last design point means that

each mmrplay command must specify all the parameters to use for that particular

playback operation.

32 Copyright © 2014, QNX Software Systems Limited

mmrplay

Playback examples

The following mmrplay commands demonstrate common use cases of playing or

recording media files. The media files accessed here are encoded in popular formats

such as MP3, M4A, and WMA, but all mmrplay commands have the same syntax and

support the same options, regardless of the media file format.

In these examples, the input URLs are pathnames in the local filesystem. These can

be the paths of files that you uploaded or files stored on connected devices. When

you attach a mediastore (e.g., a USB stick, an audio CD) to your system, the device

publisher that monitors devices of the same type as the newly attached device will

publish its mountpoint to a PPS object in /pps/qnx/mount/. For instance, when

you plug in a USB stick, the usblauncher service assigns it a mountpoint of

/fs/usb0 (or something similar). For information on how the device publishers assign

mountpoints and publish device information, see the Device Publishers Developer's

Guide.

The mmrplay playback commands automate the tasks of attaching outputs and inputs

and configuring their parameters, which must be done in separate mm-renderer API

calls before you can play media files. For examples of all the mm-renderer actions

needed to configure and control the playback of media files, see “Using mmcli to play

media files (p. 24)”.

Playing an audio file

To play an MP3 audio file located on an attached USB stick over the default audio

device, enter a command like this:

mmrplay /fs/usb0/stillness_in_time.mp3

This command doesn't name an audio output URL using -a because mmrplay will

output the media file to the default audio device if you don't specify an output URL.

In this case, mmrplay sends an output URL of audio:default to mm-renderer,

which tells it to use automated audio routing with the Audio Manager service. If mm-

renderer doesn't accept this URL, mmrplay then sends it the device pathname of

the preferred audio device (e.g., /dev/snd/pcmPreferredp). If mm-renderer

can't use this device either, the playback command fails.

You can set the volume by defining it as an audio output parameter with the -A option.

You can also explicitly state that the input type is a track (not a playlist) by using the

-t option:

mmrplay -A volume=30 -t track /fs/usb0/stillness_in_time.mp3

The output device is independent of the input format, so you would use the same

command syntax to play other types of audio files (e.g., WMA, WAV), except that your

input URL would contain a filepath with a different extension.

Copyright © 2014, QNX Software Systems Limited 33

Playback examples

Playing a playlist

The command syntax for playing the tracks in a playlist is similar to that for playing

an individual track, except that you must state the playlist input type (using -t) and

you can also set the repeat input parameter (using -I):

mmrplay -t playlist -I repeat=none /fs/usb0/u2_best_of_80s.m3u

This command sets the repeat mode to none to prevent mm-renderer from

continuously playing either a single track or the entire set of tracks in the playlist. If

you set a different repeat mode (e.g., all), mmrplay would initiate playback in mm-

renderer but then wait indefinitely for the playback to stop (because it would never

receive an mm-renderer event indicating that playback has stopped). In this case,

you would have to use the mm-renderer API or mmcli to explicitly stop playback in

the context created by mmrplay when you issued the playback command. Stopping

playback in a context requires knowing its name, which can be set with -c:

mmrplay -c test_playlist_looping -t playlist -I repeat=all \
 /fs/usb0/u2_best_of_80s.m3u

In this case, mmrplay creates a context called test_playlist_looping in mm-

renderer and then initiates continuous playback of the entire track set in the

u2_best_of_80s.m3u playlist. To stop playback in a client application or mmcli,

you would have to connect to mm-renderer (using mmr_connect()), open the existing

test_playlist_looping context (using mmr_context_open()), and then stop

playback in that context (using mmr_stop()). For full details on connecting to mm-

renderer and working with contexts, see the Multimedia Renderer Developer's Guide.

Playing a video file

To play an MP4 video file, enter a command like this:

mmrplay -v screen: /fs/usb0/seven_days_live.mp4

Here, the video output URL has a prefix of screen: to tell mm-renderer to output

the video stream to the Screen windowing service, which renders it to the display. You

can set some properties of the output window in this type of URL, as explained in

mmr_output_attach().

If you want to play video without any audio output, you can add the -a option and

specify an empty URL:

mmrplay -a "" -v screen: /fs/usb0/seven_days_live.mp4

Recording audio content

To record audio content to a file, enter a command like this:

mmrplay -c test_audio_recording -f /tmp/my_karaoke.wav \
 snd:/dev/snd/pcmPreferredc?frate=44100&nchan=2

This command directs the audio output to a WAV file named with -f. Here, the input

URL names the preferred audio capture device and provides parameters to set the

sampling rate (frate) and the number of channels (nchan). You can find a list of

34 Copyright © 2014, QNX Software Systems Limited

mmrplay

all supported parameters for this URL type in the mmr_input_attach() function

description.

The snd: input URL type works only with file output, so you must provide a

file output URL when using this input URL type.

Similar to playing a playlist with the repeat mode enabled, recording audio content

causes mmrplay to initiate playback with mm-renderer but to never process an

event indicating playback has stopped. If you start recording audio with an mmrplay

command like the one shown here, you must then explicitly stop the recording by

stopping playback in the test_audio_recording context, by either directly calling

the mm-renderer API or using mmcli.

Copyright © 2014, QNX Software Systems Limited 35

Playback examples

Chapter 4
mm-pnp

The multimedia plug-and-play tool, mm-pnp, is a demo program that exposes the

process of detecting a mediastore, uploading its media information to a database, and

playing its media files.

This demo program provides a helpful reference for writing your own media apps

because it performs all the common media-management tasks. However, the mm-pnp

program doesn't directly access media content or manage media streams. Instead, it

uses other platform services to monitor which mediastores (i.e., devices) are attached

and to synchronize and play their media files. You can customize how mm-pnp

synchronizes and plays content for different device types (e.g., iPods, USB sticks,

CDs) by modifying its configuration file.

Source code

The source code for this program is included in the platform's source code samples

package, which you can download from the same location as the installer. Note that

the appropriate makefiles are also included in the samples package, so you can build

the program with the gcc compiler on a development system.

The mm-pnp code provides a walkthrough of the API call sequences that detect when

the user attaches a mediastore and then access, extract, and play its content. The

program is written in C and contains just over 3000 lines of code, including whitespace,

comments, and preprocessor directives. The code is organized into the following

modules:

plug and play

Implements the main thread, which parses the command-line options and

starts and stops child threads.

config

Defines default values for all configuration options and parses the

configuration file to extract and store all user-specified options.

PPS monitor

Implements two child threads. One thread monitors Persistent

Publish/Subscribe (PPS) mount objects to detect when the user attaches a

device. Meanwhile, the other thread monitors QDB status objects to respond

appropriately when media databases are loaded or unloaded.

DB manager

Copyright © 2014, QNX Software Systems Limited 37

Provides a callback mechanism so that you can define your own responses

to database status changes.

sync

Stores the lists of pending and active synchronizations and communicates

with mm-sync, which performs the synchronizations. Also, implements the

child thread that handles mm-sync events.

playback

Stores the list of playlists and communicates with mm-renderer, which

plays those playlists.

linked list

Defines data types used in lists and implements the functions for iterating

through lists and for adding and removing elements.

logging

Stores the verbosity level and the list of active logging destinations (e.g.,

sloginfo, stdout). Also, defines the functions for writing log entries.

38 Copyright © 2014, QNX Software Systems Limited

mm-pnp

mm-pnp command line

Run mm-pnp to demonstrate how to access, extract, and play mediastore content

Synopsis:

mm-pnp [-c config_file] [-v[v...]]

Options:

-c config_file

Specify a configuration file that defines synchronization and playback policies

for specific device types.

If you don't provide the path for a configuration file, mm-pnp reads the

default file (/etc/mm/mm-pnp.conf).

-v

Increase output verbosity. Messages are written to sloginfo.

The -v option is handy when you're trying to understand the operation of

mm-pnp, but when lots of -v arguments are used, the logging becomes

quite significant and can change timing noticeably. The verbosity setting is

good for systems under development but should probably not be used in

production systems or during performance testing.

Description:

The mm-pnp program demonstrates the process of detecting a new mediastore,

uploading its media information to a database, and playing its media files.

The program constantly monitors the PPS mount objects to readily detect when the

user attaches a mediastore. In response to this user action, mm-pnp invokes the

multimedia services necessary to synchronize and play the mediastore's content.

You can modify the configuration file (p. 40) to customize how mm-pnp uses those

other services to manage content read from a particular device type. These settings

tell mm-pnp where to look in the mediastore filesystem to find media files, whether

or not to automatically start playback, and more.

Once started, mm-pnp runs as a self-contained process that doesn't require any user

input or accept any commands. The program remains active, responding as configured

when the user attaches mediastores, until you forcibly terminate the program with

Ctrl–C or the kill() command.

Copyright © 2014, QNX Software Systems Limited 39

mm-pnp command line

Configuring mm-pnp

You can configure mm-pnp by changing the settings in its configuration file. These

settings define the directories and device paths used for writing media databases and

managing playback. They also define parameters that control how media content from

specific device types is synchronized and stored.

The command line for starting mm-pnp doesn't support any configuration options; you

must use the configuration file to define any nondefault settings for multimedia services

and to customize media synchronization and database management for different device

types. The configuration file offers a convenient way to change the behavior of mm-

pnp without modifying and recompiling the code.

The mm-pnp program defines default values for all configuration options so

there are no mandatory option settings for the configuration file.

Configuration file contents

The configuration file is a text file with one setting defined per line. Each line consists

of an option name, followed by the equal sign (=), followed by an option value. For

readability, you can enter comments by starting lines with the number sign (#).

The first section of the file defines settings that affect the operations of the other

multimedia services used by mm-pnp. These settings are independent of the device

type, and they include:

• the hardware device that mm-renderer uses for audio output

• the PPS directories to scan for mount objects and QDB database configuration

objects

• the mountpoints used by each multimedia service (expressed as device paths in

/dev)

• the prefix that QDB uses in database names

• the maximum number of concurrent synchronizations across all device types

In the default configuration file (/etc/mm/mm-pnp.conf), the first section looks

like this:

audio_device=snd:/dev/snd/pcmPreferredp
qdb_mountpoint=/dev/qdb
renderer_mountpoint=NULL
pps_pub_root=/pps/qnx
pps_qdb_root=/pps/qnx
qdb_db_modifier=db_
sync_mountpoint=/dev/mmsync
sync_max=5

40 Copyright © 2014, QNX Software Systems Limited

mm-pnp

The subsequent sections define settings that affect how mm-pnp uses the other

multimedia services to upload and store media information read from particular device

types. These settings include:

• the directory used to hold the raw storage files for media databases

• the files that define the schema and initial contents of databases

• a flag indicating whether to play a device's media content right after synchronizing

that content

• the location within the device's filesystem to look for media files

• other flags that control which information gets synchronized

Each of these sections must begin with a line that names the device type whose media

operations are being configured (with the name enclosed in square brackets). The

name of the device type must be one of the following:

• device_unknown

• device_local

• device_usb

• device_ipod

• device_pfs

• device_audiocd

• device_datacd

• device_mmc

• device_sd

In the default configuration file, the section that configures USB devices looks like

this:

[device_usb]
sync_max=1
sync_path=/
sync_mask=0x4003
play_device=true
db_directory=Filename::/fs/tmpfs/
db_schema=SchemaFile::/etc/mm/sql/mmsync.sql
db_data_schema=DataSchemaFile::/etc/mm/sql/mmsync_data.sql

Global vs. device type synchronization limits

The global synchronization limit defined in the first section of the file applies over all

type-specific synchronization limits defined in subsequent sections. For example,

suppose you set sync_max to 5 in the first section but also set sync_max to 3 in

the [device_usb] section. If mm-pnp starts two synchronizations for USB devices

while three synchronizations for other device types are in progress, the program won't

start a third synchronization for a USB device. No more content from USB devices

can be uploaded or played until one of the current synchronizations completes.

Copyright © 2014, QNX Software Systems Limited 41

Configuring mm-pnp

You can set sync_max to 0 to disable media synchronization for a particular

device type or for all device types.

42 Copyright © 2014, QNX Software Systems Limited

mm-pnp

Initialization and termination activities

Before it can synchronize and play media content, mm-pnp must parse its configuration

file, configure other services, and start child threads. When the main thread receives

the termination signal, it stops the child threads and cleans up resources.

By understanding the initialization and termination activities of mm-pnp, you can

modify the program to log different information or support new configuration options.

Or, you can use the code as a reference for writing multithreaded media apps.

The main thread of mm-pnp performs the following tasks:

1. Setting up logging

At startup, the main thread initializes the logging service and adjusts the verbosity

based on the -v options in the command line. Note that messages outputted to

sloginfo by mm-pnp are tagged with “mm-pnp”.

2. Parsing the configuration file

The main thread parses the configuration file and stores the configuration option

settings. The mm-pnp program uses separate symbol tables when parsing different

file sections to remember which settings apply globally and which ones apply to

individual device types (see Configuring mm-pnp (p. 40) for information on the

file sections).

3. Setting up multimedia services

To enable media synchronization and playback, mm-pnp connects to QDB, mm-

sync, and mm-renderer. It also creates lists to hold the information needed by

these services, which includes:

• mediastore profiles, which store the mountpoints and device types of attached

mediastores

• details on pending synchronizations

• details on active synchronizations

• playlists ready to be played

4. Launching child threads

Once the program setup is complete, the main thread launches three child threads:

Device monitoring thread

Reads a PPS object to obtain mountpoint information on newly attached

devices, and then passes this information to QDB to load media databases.

Database monitoring thread

Copyright © 2014, QNX Software Systems Limited 43

Initialization and termination activities

Monitors QDB status objects to learn when device databases finish

loading. In response, the thread invokes mm-sync to start synchronizing

the media information on the corresponding devices.

Synchronization event-processing thread

Reads mm-sync events to learn when media file information has been

synchronized. In response, the thread creates playlists based on the

synchronized information and invokes mm-renderer to play them.

These child threads work with other multimedia services to implement an automated

process of extracting media information and playing media files when the user

attaches a device (for details, see “Device monitoring, synchronization, and playback

(p. 44)”).

After launching the child threads, the main thread begins monitoring signals to

wait for the termination request.

5. Shutting down

The mm-pnp programs runs until you issue the termination signal by using Ctrl–C

or the kill() command. When you tell it to shut down, the main thread:

• terminates the child threads

• disconnects from the multimedia services

• destroys the lists that store mediastore, synchronization, and playlist information

Device monitoring, synchronization, and playback

An mm-pnp child thread monitors a device-related PPS object and indirectly invokes

QDB to load the appropriate database in response to a device attachment. Then, a

second thread synchronizes the device's media content using mm-sync. Finally, a

third thread plays the content using mm-renderer.

These tasks are performed in an automated, ongoing process. Understanding this

process is essential if you want to adapt mm-pnp to demonstrate a different

synchronization and playback policy, or if you want to use the code as a basis for your

own media apps.

When the user attaches a device, the mm-pnp threads and the multimedia components

work together to synchronize and play media content, as illustrated in Figure 1:

Interaction between mm-pnp and multimedia components (p. 45):

44 Copyright © 2014, QNX Software Systems Limited

mm-pnp

Audio
output

QDB
databases

mm-renderer

mm-sync

QDB
server

mm-sync event-
processing thread

Database monitor
thread

Device monitor
thread

mm-pnp

qdb/status

qdb/config

mount

PPS

Device
publishers

1

2

3 4

5

6

7

8

9

10

11

12

Figure 1: Interaction between mm-pnp and multimedia components

The synchronization and playback process is triggered when the user attaches a device.

At that point, mm-pnp and the multimedia components perform the following tasks:

1. Reporting device attachments

The device publisher that monitors the hardware events triggered by the device's

attachment (e.g., USB bus notifications or SD card insertions) writes the device's

information to PPS.

2. Extracting device information

The device monitoring thread of mm-pnp reads this information, which includes

the mountpoint and device type, from a special PPS mount object (by default,

/pps/qnx/mount/.all). The thread then saves the extracted information in the

mediastore profiles list.

3. Publishing the database configuration

Based on the database settings defined for the device type, the same thread

publishes the configuration for the QDB database that will store the device's media

information.

4. Loading the database

Copyright © 2014, QNX Software Systems Limited 45

Initialization and termination activities

When mm-pnp publishes the PPS object to the QDB configuration directory

(/pps/qnx/qdb/config/), the QDB server begins loading the device's database.

5. Reporting database status

The QDB server reports the outcome of the database load operation by writing the

database's new status to a PPS object in the QDB status directory

(/pps/qnx/qdb/status/).

6. Looking up device information

The database monitoring thread reads database statuses from a special PPS object

(by default, /pps/qnx/qdb/status/.all). When it learns that a database has

been loaded successfully, the thread uses the database name to look up the

corresponding device's information in the mediastore profiles list. From this list,

the thread obtains the device's mountpoint and synchronization path, which it then

stores in a new entry in the pending synchronizations list.

7. Starting synchronizations

Before it can start a synchronization, mm-pnp must check the limits on the number

of concurrent synchronizations allowed for all device types and for the device type

of the first entry in the pending synchronizations list. If these limits have not been

exceeded, the database monitoring thread passes the mountpoint and

synchronization path stored in the first list entry to mm-sync, which starts

synchronizing the device's media information. Then, the thread moves the entry

from the pending synchronizations list into the active synchronizations list.

If the synchronization limits have been exceeded, mm-pnp instead waits for one

of the active synchronizations to finish and when this happens, it starts another

synchronization.

If you extend the DB manager (p. 38) module to define additional

operations for handling database status changes, the database monitoring

thread should perform these operations right after it calls mm-sync.

8. Writing file information to the database

The mm-sync service reads file information from media tracks on the device and

then invokes QDB to store this information in the device's database (which was

loaded in Step 4 (p. 45) by the QDB server).

9. Notifying about file information uploading

When mm-sync finishes uploading the file information to the database, the service

generates the MMSYNC_EVENT_MS_1PASSCOMPLETE event. The synchronization

event-processing thread receives this event and in response, looks up the device's

entry in the active synchronizations list to obtain the database name.

10. Specifying a playlist

46 Copyright © 2014, QNX Software Systems Limited

mm-pnp

The same thread uses the database name to define a playlist for playing the device's

media content. The playlist is based on an SQL query that retrieves information

from all the files listed in the database.

The thread then invokes mm-renderer to:

a. create a new context

b. attach the output to the default sound device to enable audio output

c. attach the newly defined playlist as the input

d. start playing the playlist

Because you can name only one output device for mm-renderer to use,

mm-pnp stops any current playback when it processes an

MMSYNC_EVENT_MS_1PASSCOMPLETE event. So, the program always

begins playing the media content of the latest device attached to the system.

11. Querying filenames in the database

The mm-renderer service extracts the names of all media files listed in the

database by running the SQL query that mm-pnp provided as the playlist basis.

The service must know the filenames to play their media content.

12. Outputting playlist tracks

The mm-renderer service then starts playing the tracks in the playlist. The tracks

are played in sequence, with no repeating, until the entire playlist has been played.

Copyright © 2014, QNX Software Systems Limited 47

Initialization and termination activities

Index

C

configuring mm-pnp 40

D

displaying options of multimedia test utilities 11

E

entering commands in interactive mode of mmcli 22
executing test scripts with mmcli 20

M

mm-pnp 37, 39, 40, 43, 44
child threads 44
command line 39
configuration file 40
description 39
device monitoring, synchronization, and playback process
44
initialization and termination activities 43
main thread 43
options 39
overview 37
source code 37

mmcli 13, 15, 16, 18, 20, 21, 22, 24, 25
command line 15
description 16
interactive session example 22
interactive sessions 22
keywords 18
language 18
options 15
overview 13
playing a video file 25
playing an audio file 24

mmcli (continued)
test script example 21
test scripts 20

mmrplay 27, 29, 32, 33, 34
command line 29
description 32
options 29
overview 27
playing a playlist 34
playing a video file 34
playing an audio file 33
playing media files on local devices 33
recording audio content 34

multimedia test utilities 9, 10
binaries included in the installer package 10
listing 10
overview 9
role in app development 9

R

running mmrplay 29

S

starting mm-pnp 39
starting mmcli 15

T

Technical support 8
Typographical conventions 6

U

using mmcli instead of other components 14
using mmrplay instead of mm-renderer 28
using the multimedia test utilities 11

Copyright © 2014, QNX Software Systems Limited 49

Multimedia Test Utilities Guide

50 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Role of the Multimedia Test Utilities
	Multimedia test utilities
	Using the multimedia test utilities

	mmcli
	Using mmcli instead of other components
	mmcli command line
	mmcli language
	mmcli test scripts
	mmcli interactive sessions

	Using mmcli to play media files

	mmrplay
	Using mmrplay instead of mm-renderer
	mmrplay command line
	Playback examples

	mm-pnp
	mm-pnp command line
	Configuring mm-pnp
	Initialization and termination activities
	Device monitoring, synchronization, and playback

	Index

