scalbn(), scalbnf(), scalbnl()

Load the exponent of a radix-independent floating point number

Synopsis:

#include <math.h>

double scalbn ( double x,
                int n );

float scalbnf ( float x,
                int n );

long double scalbnl ( long double x,
                      int n );

Arguments:

x
The floating point number that you want to multiply by the exponent.
n
The exponent to apply to the radix of the machine's floating-point arithmetic.

Library:

libm

Use the -l m option to qcc to link against this library.

Description:

The scalbn(), scalbnf(), and scalbnl() functions compute x × rn, where r is the radix of the machine's floating-point arithmetic. The difference between the scalbn* and scalbln* functions is the type of the second argument.

To check for error situations, use feclearexcept() and fetestexcept():

Returns:

x × rn

If a range error due to overflow occurs, a range error occurs, and these functions return ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL, as appropriate. If a range error due to underflow occurs, the correct result (after rounding) is returned.

Errors:

FE_OVERFLOW
The result would cause an overflow.
FE_UNDERFLOW
The result would cause an underflow.

Examples:

#include <stdio.h>
#include <inttypes.h>
#include <math.h>
#include <fenv.h>
#include <stdlib.h>

int main( void )
{
    double a, b, c, d;
    int except_flags;

    feclearexcept(FE_ALL_EXCEPT);
    a = 10;
    b = 2;
    c = scalbn(a, b);

    except_flags = fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW);
    if(except_flags) {
        /* An error occurred; handle it appropriately. */
    }

    feclearexcept(FE_ALL_EXCEPT);

    d = sqrt(c/a);

    except_flags = fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW);
    if(except_flags) {
        /* An error occurred; handle it appropriately. */
    }

    printf("Radix of machine's fp arithmetic is %f \n", d);
    printf("So %f = %f * (%f ^ %f) \n", c, a, d, b);

    return EXIT_SUCCESS;
}

produces the output:

Radix of machine's fp arithmetic is 2.000000
So 40.000000 = 10.000000 * (2.000000 ^ 2.000000)

Classification:

ANSI, POSIX 1003.1

Safety:  
Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes