Log gamma function
#include <math.h> double lgamma( double x ); double lgamma_r( double x, int* signgamp); float lgammaf( float x ); float lgammaf_r( float x, int* signgamp);
The lgamma() and lgamma_r() functions return the natural log (ln) of the Γ function and are equivalent to gamma(). These functions return ln|Γ(x)|, where Γ(x) is defined as follows:
The results converge when x is between 0 and 1. The Γ function has the property:
Γ(N) = Γ(N-1)×N
The lgamma* functions compute the log because the Γ function grows very quickly.
The lgamma() and lgammaf() functions use the external integer signgam to return the sign of Γ(x), while lgamma_r() and lgammaf_r() use the user-allocated space addressed by signgamp.
g = signgam * exp( lgamma( x ));
to compute g = Γ(x)'. Instead, compute lgamma() first:
lg = lgamma(x); g = signgam * exp( lg );
Note that Γ(x) must overflow when x is large enough, underflow when -x is large enough, and generate a division by 0 exception at the singularities x a nonpositive integer.
ln|Γ(x)|
#include <stdio.h> #include <errno.h> #include <inttypes.h> #include <math.h> #include <fpstatus.h> int main(int argc, char** argv) { double a, b; errno = EOK; a = 0.5; b = lgamma(a); printf("lgamma(%f) = %f %d \n", a, b, errno); return(0); }
produces the output:
lgamma(0.500000) = 0.572365 0
lgamma() and lgammaf() are ANSI, POSIX 1003.1; lgamma_r() and lgammaf_r() are QNX Neutrino
Safety: | |
---|---|
Cancellation point | No |
Interrupt handler | No |
Signal handler | No |
Thread | Yes |